Secret key distillation over a pure loss quantum wiretap channel under restricted eavesdropping

Ziwen Pan, Kaushik P. Seshadreesan, William Clark, Mark R. Adcock, Ivan B. Djordjevic, Jeffrey H. Shapiro, Saikat Guha

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance - given by the Hashing inequality - can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses.

Original languageEnglish (US)
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3032-3036
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: Jul 7 2019Jul 12 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
CountryFrance
CityParis
Period7/7/197/12/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Secret key distillation over a pure loss quantum wiretap channel under restricted eavesdropping'. Together they form a unique fingerprint.

  • Cite this

    Pan, Z., Seshadreesan, K. P., Clark, W., Adcock, M. R., Djordjevic, I. B., Shapiro, J. H., & Guha, S. (2019). Secret key distillation over a pure loss quantum wiretap channel under restricted eavesdropping. In 2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings (pp. 3032-3036). [8849223] (IEEE International Symposium on Information Theory - Proceedings; Vol. 2019-July). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIT.2019.8849223