Selection, growth and characterization of materials for MBE-produced x-ray optics

Patrick A. Kearney, J. M. Slaughter, Charles M. Falco

Research output: Contribution to journalConference articlepeer-review

5 Scopus citations

Abstract

Molecular Beam Epitaxy (MBE) is capable of producing a variety of high purity, epitaxial multilayer films with well controlled interfaces. However, the conditions necessary for MBE growth somewhat restricts the choice of useful materials. We discuss our material selection procedure for MBE-deposited x-ray optical multilayer materials. This procedure takes into account factors such as chemical reactivity, thermal stability, and lattice match, as well as the maximum theoretical reflectivity obtainable with a given material pair. The present work consists of a comprehensive study of elemental films, and a more detailed consideration of a few select compound systems. Both the precise deposition control possible with MBE, as well as the many in situ characterization methods, combine to allow a high degree of control over the formation of interfaces. Our principle MBE system for x-ray optics contains in situ Reflection High Energy Electron Diffraction (RHEED), Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), X-Ray Photoelectron Spectroscopy (XPS) and Ion Scattering Spectroscopy (ISS). An overview of the techniques used to analyze our films be given, including data from our growth of epitaxial CoSi2 absorbing layers on Si (111) using a solid state reaction technique.

Original languageEnglish (US)
Pages (from-to)25-31
Number of pages7
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume1343
StatePublished - Jan 1 1991
EventX-Ray/EUV Optics for Astronomy, Microscopy, Polarimetry, and Projection Lithography - San Diego, CA, USA
Duration: Jul 9 1990Jul 13 1990

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Selection, growth and characterization of materials for MBE-produced x-ray optics'. Together they form a unique fingerprint.

Cite this