Self-Affine Fractal Spatial and Temporal Variability of the San Pedro River, Southern Arizona

Z. C. Williams, Jon Pelletier, Thomas Meixner

Research output: Contribution to journalArticle

Abstract

Prevailing mathematical models of alluvial channel evolution generate smooth, idealized longitudinal profiles. Alluvial channel longitudinal profiles in nature, however, have substantial multiscale spatial and temporal variability. In this paper we quantify the spatial and temporal hydrologic and geomorphic variability of a 90-km-long reach of the San Pedro River (San Pedro River) in southeastern Arizona and compare that variability to numerical models designed specifically to honor the spatial and temporal variability of alluvial channel systems in nature. A key motivation of this work is the power law frequency size distribution of wet and dry reaches observed in the San Pedro River. We demonstrate that such a distribution is consistent with self-affine fractal variations of the depth to bedrock and the channel longitudinal profile. At large spatial scales, spatial variations in depth to bedrock control the accommodation space for groundwater, which, in turn, controls spatial variations in surface water discharge. At small spatial scales, the longitudinal profile controls spatial variations in surface water discharge by changing the distance between the channel bed and the water table. These results underscore the complex spatiotemporal behavior of dryland alluvial rivers and the tight coupling that is possible between hydrologic and geomorphic processes in such systems.

Original languageEnglish (US)
JournalJournal of Geophysical Research: Earth Surface
DOIs
StatePublished - Jan 1 2019

Fingerprint

Fractals
rivers
fractals
Rivers
spatial variation
bedrock
Surface waters
river
surface water
profiles
Longitudinal control
water tables
arid lands
water table
accommodation
Numerical models
Groundwater
ground water
groundwater
mathematical models

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Cite this

@article{315bc34d98264fd2abe7b70df2372503,
title = "Self-Affine Fractal Spatial and Temporal Variability of the San Pedro River, Southern Arizona",
abstract = "Prevailing mathematical models of alluvial channel evolution generate smooth, idealized longitudinal profiles. Alluvial channel longitudinal profiles in nature, however, have substantial multiscale spatial and temporal variability. In this paper we quantify the spatial and temporal hydrologic and geomorphic variability of a 90-km-long reach of the San Pedro River (San Pedro River) in southeastern Arizona and compare that variability to numerical models designed specifically to honor the spatial and temporal variability of alluvial channel systems in nature. A key motivation of this work is the power law frequency size distribution of wet and dry reaches observed in the San Pedro River. We demonstrate that such a distribution is consistent with self-affine fractal variations of the depth to bedrock and the channel longitudinal profile. At large spatial scales, spatial variations in depth to bedrock control the accommodation space for groundwater, which, in turn, controls spatial variations in surface water discharge. At small spatial scales, the longitudinal profile controls spatial variations in surface water discharge by changing the distance between the channel bed and the water table. These results underscore the complex spatiotemporal behavior of dryland alluvial rivers and the tight coupling that is possible between hydrologic and geomorphic processes in such systems.",
author = "Williams, {Z. C.} and Jon Pelletier and Thomas Meixner",
year = "2019",
month = "1",
day = "1",
doi = "10.1029/2018JF004853",
language = "English (US)",
journal = "Journal of Geophysical Research: Space Physics",
issn = "2169-9380",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Self-Affine Fractal Spatial and Temporal Variability of the San Pedro River, Southern Arizona

AU - Williams, Z. C.

AU - Pelletier, Jon

AU - Meixner, Thomas

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Prevailing mathematical models of alluvial channel evolution generate smooth, idealized longitudinal profiles. Alluvial channel longitudinal profiles in nature, however, have substantial multiscale spatial and temporal variability. In this paper we quantify the spatial and temporal hydrologic and geomorphic variability of a 90-km-long reach of the San Pedro River (San Pedro River) in southeastern Arizona and compare that variability to numerical models designed specifically to honor the spatial and temporal variability of alluvial channel systems in nature. A key motivation of this work is the power law frequency size distribution of wet and dry reaches observed in the San Pedro River. We demonstrate that such a distribution is consistent with self-affine fractal variations of the depth to bedrock and the channel longitudinal profile. At large spatial scales, spatial variations in depth to bedrock control the accommodation space for groundwater, which, in turn, controls spatial variations in surface water discharge. At small spatial scales, the longitudinal profile controls spatial variations in surface water discharge by changing the distance between the channel bed and the water table. These results underscore the complex spatiotemporal behavior of dryland alluvial rivers and the tight coupling that is possible between hydrologic and geomorphic processes in such systems.

AB - Prevailing mathematical models of alluvial channel evolution generate smooth, idealized longitudinal profiles. Alluvial channel longitudinal profiles in nature, however, have substantial multiscale spatial and temporal variability. In this paper we quantify the spatial and temporal hydrologic and geomorphic variability of a 90-km-long reach of the San Pedro River (San Pedro River) in southeastern Arizona and compare that variability to numerical models designed specifically to honor the spatial and temporal variability of alluvial channel systems in nature. A key motivation of this work is the power law frequency size distribution of wet and dry reaches observed in the San Pedro River. We demonstrate that such a distribution is consistent with self-affine fractal variations of the depth to bedrock and the channel longitudinal profile. At large spatial scales, spatial variations in depth to bedrock control the accommodation space for groundwater, which, in turn, controls spatial variations in surface water discharge. At small spatial scales, the longitudinal profile controls spatial variations in surface water discharge by changing the distance between the channel bed and the water table. These results underscore the complex spatiotemporal behavior of dryland alluvial rivers and the tight coupling that is possible between hydrologic and geomorphic processes in such systems.

UR - http://www.scopus.com/inward/record.url?scp=85068069837&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068069837&partnerID=8YFLogxK

U2 - 10.1029/2018JF004853

DO - 10.1029/2018JF004853

M3 - Article

AN - SCOPUS:85068069837

JO - Journal of Geophysical Research: Space Physics

JF - Journal of Geophysical Research: Space Physics

SN - 2169-9380

ER -