Self-tuning blind identification and equalization of IIR channels

Miloje Radenkovic, Tamal Bose, Zhurun Zhang

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This paper considers self-tuning blind identification and equalization of fractionally spaced IIR channels. One recursive estimator is used to generate parameter estimates of the numerators of IIR systems, while the other estimates denominator of IIR channel. Equalizer parameters are calculated by solving Bezout type equation. It is shown that the numerator parameter estimates converge (a.s.) toward a scalar multiple of the true coefficients, while the second algorithm provides consistent denominator estimates. It is proved that the equalizer output converges (a.s.) to a scalar version of the actual symbol sequence.

Original languageEnglish (US)
Pages (from-to)930-937
Number of pages8
JournalEurasip Journal on Applied Signal Processing
Volume2003
Issue number9
DOIs
StatePublished - Aug 1 2003
Externally publishedYes

Fingerprint

Equalizers
Tuning

Keywords

  • Blind identification
  • Digital filtering
  • Parameter convergence
  • Recursive estimation
  • Self-tuning equalization

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Hardware and Architecture
  • Signal Processing

Cite this

Self-tuning blind identification and equalization of IIR channels. / Radenkovic, Miloje; Bose, Tamal; Zhang, Zhurun.

In: Eurasip Journal on Applied Signal Processing, Vol. 2003, No. 9, 01.08.2003, p. 930-937.

Research output: Contribution to journalArticle

Radenkovic, Miloje ; Bose, Tamal ; Zhang, Zhurun. / Self-tuning blind identification and equalization of IIR channels. In: Eurasip Journal on Applied Signal Processing. 2003 ; Vol. 2003, No. 9. pp. 930-937.
@article{d25f7f9492b04ca485ad1b357586531c,
title = "Self-tuning blind identification and equalization of IIR channels",
abstract = "This paper considers self-tuning blind identification and equalization of fractionally spaced IIR channels. One recursive estimator is used to generate parameter estimates of the numerators of IIR systems, while the other estimates denominator of IIR channel. Equalizer parameters are calculated by solving Bezout type equation. It is shown that the numerator parameter estimates converge (a.s.) toward a scalar multiple of the true coefficients, while the second algorithm provides consistent denominator estimates. It is proved that the equalizer output converges (a.s.) to a scalar version of the actual symbol sequence.",
keywords = "Blind identification, Digital filtering, Parameter convergence, Recursive estimation, Self-tuning equalization",
author = "Miloje Radenkovic and Tamal Bose and Zhurun Zhang",
year = "2003",
month = "8",
day = "1",
doi = "10.1155/S111086570330410X",
language = "English (US)",
volume = "2003",
pages = "930--937",
journal = "Eurasip Journal on Advances in Signal Processing",
issn = "1687-6172",
publisher = "Springer Publishing Company",
number = "9",

}

TY - JOUR

T1 - Self-tuning blind identification and equalization of IIR channels

AU - Radenkovic, Miloje

AU - Bose, Tamal

AU - Zhang, Zhurun

PY - 2003/8/1

Y1 - 2003/8/1

N2 - This paper considers self-tuning blind identification and equalization of fractionally spaced IIR channels. One recursive estimator is used to generate parameter estimates of the numerators of IIR systems, while the other estimates denominator of IIR channel. Equalizer parameters are calculated by solving Bezout type equation. It is shown that the numerator parameter estimates converge (a.s.) toward a scalar multiple of the true coefficients, while the second algorithm provides consistent denominator estimates. It is proved that the equalizer output converges (a.s.) to a scalar version of the actual symbol sequence.

AB - This paper considers self-tuning blind identification and equalization of fractionally spaced IIR channels. One recursive estimator is used to generate parameter estimates of the numerators of IIR systems, while the other estimates denominator of IIR channel. Equalizer parameters are calculated by solving Bezout type equation. It is shown that the numerator parameter estimates converge (a.s.) toward a scalar multiple of the true coefficients, while the second algorithm provides consistent denominator estimates. It is proved that the equalizer output converges (a.s.) to a scalar version of the actual symbol sequence.

KW - Blind identification

KW - Digital filtering

KW - Parameter convergence

KW - Recursive estimation

KW - Self-tuning equalization

UR - http://www.scopus.com/inward/record.url?scp=0141614137&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141614137&partnerID=8YFLogxK

U2 - 10.1155/S111086570330410X

DO - 10.1155/S111086570330410X

M3 - Article

AN - SCOPUS:0141614137

VL - 2003

SP - 930

EP - 937

JO - Eurasip Journal on Advances in Signal Processing

JF - Eurasip Journal on Advances in Signal Processing

SN - 1687-6172

IS - 9

ER -