Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China

Aihui Wang, Xubin Zeng

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

The quality of simulated soil hydrological variables (i.e., soil moisture, evapotranspiration, and runoff) is largely dependent on the accuracy of meteorological forcing data, especially precipitation and air temperature. This issue is quantitatively addressed here by running the Community Land Model (CLM3.5) over China from 1993 to 2002 using the reanalysis-based precipitation and air temperature and in situ observations in the meteorological forcing data set. Compared to the in situ measured soil moisture data, the CLM3.5 simulation can generally capture the spatial and seasonal variations of soil moisture but produces too-wet soil in northeastern and eastern China and too-dry soil in northwestern China. This deficiency is significantly reduced when the in situ measured precipitation data are used to drive the model. An index is also constructed to quantify the sensitivities of soil hydrological variables to variations of precipitation and air temperature. The highest sensitivity of surface hydrological variables to precipitation appears over semiarid regions, while the sensitivity to air temperature for different variables varies regionally (semiarid regions for runoff and soil moisture and humid regions for evapotranspiration (ET)). Over semiarid regions, precipitation and air temperature are equally important to the simulations of soil hydrological variables. Over humid regions, in contrast, ET is more dependent on air temperature than on precipitation, while soil moisture and runoff are less affected by air temperature.

Original languageEnglish (US)
Article numberD02107
JournalJournal of Geophysical Research: Space Physics
Volume116
Issue number2
DOIs
StatePublished - 2011

Fingerprint

hydrological cycle
China
soil moisture
Soil moisture
air temperature
soils
Water
evapotranspiration
sensitivity
air
Evapotranspiration
Air
Soils
simulation
drainage
Runoff
semiarid region
water
Temperature
temperature

ASJC Scopus subject areas

  • Atmospheric Science
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

@article{78d9a64cb9dc430098d5a4a950c4c8ca,
title = "Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China",
abstract = "The quality of simulated soil hydrological variables (i.e., soil moisture, evapotranspiration, and runoff) is largely dependent on the accuracy of meteorological forcing data, especially precipitation and air temperature. This issue is quantitatively addressed here by running the Community Land Model (CLM3.5) over China from 1993 to 2002 using the reanalysis-based precipitation and air temperature and in situ observations in the meteorological forcing data set. Compared to the in situ measured soil moisture data, the CLM3.5 simulation can generally capture the spatial and seasonal variations of soil moisture but produces too-wet soil in northeastern and eastern China and too-dry soil in northwestern China. This deficiency is significantly reduced when the in situ measured precipitation data are used to drive the model. An index is also constructed to quantify the sensitivities of soil hydrological variables to variations of precipitation and air temperature. The highest sensitivity of surface hydrological variables to precipitation appears over semiarid regions, while the sensitivity to air temperature for different variables varies regionally (semiarid regions for runoff and soil moisture and humid regions for evapotranspiration (ET)). Over semiarid regions, precipitation and air temperature are equally important to the simulations of soil hydrological variables. Over humid regions, in contrast, ET is more dependent on air temperature than on precipitation, while soil moisture and runoff are less affected by air temperature.",
author = "Aihui Wang and Xubin Zeng",
year = "2011",
doi = "10.1029/2010JD014659",
language = "English (US)",
volume = "116",
journal = "Journal of Geophysical Research: Space Physics",
issn = "2169-9380",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China

AU - Wang, Aihui

AU - Zeng, Xubin

PY - 2011

Y1 - 2011

N2 - The quality of simulated soil hydrological variables (i.e., soil moisture, evapotranspiration, and runoff) is largely dependent on the accuracy of meteorological forcing data, especially precipitation and air temperature. This issue is quantitatively addressed here by running the Community Land Model (CLM3.5) over China from 1993 to 2002 using the reanalysis-based precipitation and air temperature and in situ observations in the meteorological forcing data set. Compared to the in situ measured soil moisture data, the CLM3.5 simulation can generally capture the spatial and seasonal variations of soil moisture but produces too-wet soil in northeastern and eastern China and too-dry soil in northwestern China. This deficiency is significantly reduced when the in situ measured precipitation data are used to drive the model. An index is also constructed to quantify the sensitivities of soil hydrological variables to variations of precipitation and air temperature. The highest sensitivity of surface hydrological variables to precipitation appears over semiarid regions, while the sensitivity to air temperature for different variables varies regionally (semiarid regions for runoff and soil moisture and humid regions for evapotranspiration (ET)). Over semiarid regions, precipitation and air temperature are equally important to the simulations of soil hydrological variables. Over humid regions, in contrast, ET is more dependent on air temperature than on precipitation, while soil moisture and runoff are less affected by air temperature.

AB - The quality of simulated soil hydrological variables (i.e., soil moisture, evapotranspiration, and runoff) is largely dependent on the accuracy of meteorological forcing data, especially precipitation and air temperature. This issue is quantitatively addressed here by running the Community Land Model (CLM3.5) over China from 1993 to 2002 using the reanalysis-based precipitation and air temperature and in situ observations in the meteorological forcing data set. Compared to the in situ measured soil moisture data, the CLM3.5 simulation can generally capture the spatial and seasonal variations of soil moisture but produces too-wet soil in northeastern and eastern China and too-dry soil in northwestern China. This deficiency is significantly reduced when the in situ measured precipitation data are used to drive the model. An index is also constructed to quantify the sensitivities of soil hydrological variables to variations of precipitation and air temperature. The highest sensitivity of surface hydrological variables to precipitation appears over semiarid regions, while the sensitivity to air temperature for different variables varies regionally (semiarid regions for runoff and soil moisture and humid regions for evapotranspiration (ET)). Over semiarid regions, precipitation and air temperature are equally important to the simulations of soil hydrological variables. Over humid regions, in contrast, ET is more dependent on air temperature than on precipitation, while soil moisture and runoff are less affected by air temperature.

UR - http://www.scopus.com/inward/record.url?scp=79251624705&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79251624705&partnerID=8YFLogxK

U2 - 10.1029/2010JD014659

DO - 10.1029/2010JD014659

M3 - Article

AN - SCOPUS:79251624705

VL - 116

JO - Journal of Geophysical Research: Space Physics

JF - Journal of Geophysical Research: Space Physics

SN - 2169-9380

IS - 2

M1 - D02107

ER -