Serum liver enzyme and histopathologic changes in calves with chronic and chronic-delayed Senecio jacobaea toxicosis.

A. M. Craig, E. G. Pearson, C. Meyer, John A Schmitz

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Progressive changes in serum enzyme activity and liver histologic features were monitored in calves fed tansy ragwort (Senecio jacobaea)-contaminated pellets. The experiments were designed to simulate natural intoxicant ingestion conditions in relationship to the dose and duration of exposure to the toxic plant to correlate early laboratory diagnostic changes with the natural progression of the disease, thereby facilitating early diagnosis and intervention by veterinary clinicians. Eight calves were fed tansy ragwort and 4 additional calves served as controls. In group 1, 4 calves were continuously fed dried tansy ragwort mixed in a pelleted feed at a 5% concentration by dry weight until terminal liver disease developed. Serum liver enzyme (alkaline phosphatase, glutamate dehydrogenase, and gamma-glutamyltransferase) activities were monitored at weekly intervals in these calves and in the 2 controls. In group 2, 4 calves were fed the same contaminated feed for only 60 days, with return to normal feed for the duration of the trial. Two additional calves served as controls. Their liver enzyme activities were monitored every other week in conjunction with percutaneous liver biopsies. All 8 calves fed tansy ragwort-contaminated pellets developed terminal hepatopathy in either a chronic pattern (n = 6) or a chronic-delayed pattern (n = 2), with the onset of a moribund state or sudden death at 11 to 17 weeks and 27 to 51 weeks, respectively. The calves were euthanatized when classic terminal signs of hepatic encephalopathy first became evident. The clinicopathologic patterns of chronic and chronic-delayed toxicoses were typical of over 5,000 cases of field tansy toxicosis diagnosed at the diagnostic laboratory. Serum glutamate dehydrogenase was the first enzyme to increase in most animals, with a short-term increase to peak values followed by a rapid return to normal. This enzyme change was followed by increases in alkaline phosphatase and gamma-glutamyltransferase. Serum enzyme changes preceded development of recognizable histologic lesions. Vacuolar changes in hepatocyte nuclei, biliary hyperplasia, and fibrosis sequentially developed in liver biopsy specimens from each animal, whereas megalocytosis was not a predominant feature until necropsy. On the basis of our findings, we suggest that the optimal tests for diagnosis of pyrrolizidine alkaloid intoxication should consist of liver biopsy and determination of concurrent serum liver-enzyme activities.

Original languageEnglish (US)
Pages (from-to)1969-1978
Number of pages10
JournalAmerican Journal of Veterinary Research
Volume52
Issue number12
StatePublished - Dec 1991
Externally publishedYes

Fingerprint

Senecio
Senecio jacobaea
Tanacetum
poisoning
calves
liver
Liver
Enzymes
enzymes
Serum
Glutamate Dehydrogenase
gamma-Glutamyltransferase
biopsy
Biopsy
gamma-glutamyltransferase
glutamate dehydrogenase
Alkaline Phosphatase
enzyme activity
Toxic Plants
Pyrrolizidine Alkaloids

ASJC Scopus subject areas

  • veterinary(all)

Cite this

Serum liver enzyme and histopathologic changes in calves with chronic and chronic-delayed Senecio jacobaea toxicosis. / Craig, A. M.; Pearson, E. G.; Meyer, C.; Schmitz, John A.

In: American Journal of Veterinary Research, Vol. 52, No. 12, 12.1991, p. 1969-1978.

Research output: Contribution to journalArticle

@article{ba9c04f26207473ba8f988c2bb47c680,
title = "Serum liver enzyme and histopathologic changes in calves with chronic and chronic-delayed Senecio jacobaea toxicosis.",
abstract = "Progressive changes in serum enzyme activity and liver histologic features were monitored in calves fed tansy ragwort (Senecio jacobaea)-contaminated pellets. The experiments were designed to simulate natural intoxicant ingestion conditions in relationship to the dose and duration of exposure to the toxic plant to correlate early laboratory diagnostic changes with the natural progression of the disease, thereby facilitating early diagnosis and intervention by veterinary clinicians. Eight calves were fed tansy ragwort and 4 additional calves served as controls. In group 1, 4 calves were continuously fed dried tansy ragwort mixed in a pelleted feed at a 5{\%} concentration by dry weight until terminal liver disease developed. Serum liver enzyme (alkaline phosphatase, glutamate dehydrogenase, and gamma-glutamyltransferase) activities were monitored at weekly intervals in these calves and in the 2 controls. In group 2, 4 calves were fed the same contaminated feed for only 60 days, with return to normal feed for the duration of the trial. Two additional calves served as controls. Their liver enzyme activities were monitored every other week in conjunction with percutaneous liver biopsies. All 8 calves fed tansy ragwort-contaminated pellets developed terminal hepatopathy in either a chronic pattern (n = 6) or a chronic-delayed pattern (n = 2), with the onset of a moribund state or sudden death at 11 to 17 weeks and 27 to 51 weeks, respectively. The calves were euthanatized when classic terminal signs of hepatic encephalopathy first became evident. The clinicopathologic patterns of chronic and chronic-delayed toxicoses were typical of over 5,000 cases of field tansy toxicosis diagnosed at the diagnostic laboratory. Serum glutamate dehydrogenase was the first enzyme to increase in most animals, with a short-term increase to peak values followed by a rapid return to normal. This enzyme change was followed by increases in alkaline phosphatase and gamma-glutamyltransferase. Serum enzyme changes preceded development of recognizable histologic lesions. Vacuolar changes in hepatocyte nuclei, biliary hyperplasia, and fibrosis sequentially developed in liver biopsy specimens from each animal, whereas megalocytosis was not a predominant feature until necropsy. On the basis of our findings, we suggest that the optimal tests for diagnosis of pyrrolizidine alkaloid intoxication should consist of liver biopsy and determination of concurrent serum liver-enzyme activities.",
author = "Craig, {A. M.} and Pearson, {E. G.} and C. Meyer and Schmitz, {John A}",
year = "1991",
month = "12",
language = "English (US)",
volume = "52",
pages = "1969--1978",
journal = "American Journal of Veterinary Research",
issn = "0002-9645",
publisher = "American Veterinary Medical Association",
number = "12",

}

TY - JOUR

T1 - Serum liver enzyme and histopathologic changes in calves with chronic and chronic-delayed Senecio jacobaea toxicosis.

AU - Craig, A. M.

AU - Pearson, E. G.

AU - Meyer, C.

AU - Schmitz, John A

PY - 1991/12

Y1 - 1991/12

N2 - Progressive changes in serum enzyme activity and liver histologic features were monitored in calves fed tansy ragwort (Senecio jacobaea)-contaminated pellets. The experiments were designed to simulate natural intoxicant ingestion conditions in relationship to the dose and duration of exposure to the toxic plant to correlate early laboratory diagnostic changes with the natural progression of the disease, thereby facilitating early diagnosis and intervention by veterinary clinicians. Eight calves were fed tansy ragwort and 4 additional calves served as controls. In group 1, 4 calves were continuously fed dried tansy ragwort mixed in a pelleted feed at a 5% concentration by dry weight until terminal liver disease developed. Serum liver enzyme (alkaline phosphatase, glutamate dehydrogenase, and gamma-glutamyltransferase) activities were monitored at weekly intervals in these calves and in the 2 controls. In group 2, 4 calves were fed the same contaminated feed for only 60 days, with return to normal feed for the duration of the trial. Two additional calves served as controls. Their liver enzyme activities were monitored every other week in conjunction with percutaneous liver biopsies. All 8 calves fed tansy ragwort-contaminated pellets developed terminal hepatopathy in either a chronic pattern (n = 6) or a chronic-delayed pattern (n = 2), with the onset of a moribund state or sudden death at 11 to 17 weeks and 27 to 51 weeks, respectively. The calves were euthanatized when classic terminal signs of hepatic encephalopathy first became evident. The clinicopathologic patterns of chronic and chronic-delayed toxicoses were typical of over 5,000 cases of field tansy toxicosis diagnosed at the diagnostic laboratory. Serum glutamate dehydrogenase was the first enzyme to increase in most animals, with a short-term increase to peak values followed by a rapid return to normal. This enzyme change was followed by increases in alkaline phosphatase and gamma-glutamyltransferase. Serum enzyme changes preceded development of recognizable histologic lesions. Vacuolar changes in hepatocyte nuclei, biliary hyperplasia, and fibrosis sequentially developed in liver biopsy specimens from each animal, whereas megalocytosis was not a predominant feature until necropsy. On the basis of our findings, we suggest that the optimal tests for diagnosis of pyrrolizidine alkaloid intoxication should consist of liver biopsy and determination of concurrent serum liver-enzyme activities.

AB - Progressive changes in serum enzyme activity and liver histologic features were monitored in calves fed tansy ragwort (Senecio jacobaea)-contaminated pellets. The experiments were designed to simulate natural intoxicant ingestion conditions in relationship to the dose and duration of exposure to the toxic plant to correlate early laboratory diagnostic changes with the natural progression of the disease, thereby facilitating early diagnosis and intervention by veterinary clinicians. Eight calves were fed tansy ragwort and 4 additional calves served as controls. In group 1, 4 calves were continuously fed dried tansy ragwort mixed in a pelleted feed at a 5% concentration by dry weight until terminal liver disease developed. Serum liver enzyme (alkaline phosphatase, glutamate dehydrogenase, and gamma-glutamyltransferase) activities were monitored at weekly intervals in these calves and in the 2 controls. In group 2, 4 calves were fed the same contaminated feed for only 60 days, with return to normal feed for the duration of the trial. Two additional calves served as controls. Their liver enzyme activities were monitored every other week in conjunction with percutaneous liver biopsies. All 8 calves fed tansy ragwort-contaminated pellets developed terminal hepatopathy in either a chronic pattern (n = 6) or a chronic-delayed pattern (n = 2), with the onset of a moribund state or sudden death at 11 to 17 weeks and 27 to 51 weeks, respectively. The calves were euthanatized when classic terminal signs of hepatic encephalopathy first became evident. The clinicopathologic patterns of chronic and chronic-delayed toxicoses were typical of over 5,000 cases of field tansy toxicosis diagnosed at the diagnostic laboratory. Serum glutamate dehydrogenase was the first enzyme to increase in most animals, with a short-term increase to peak values followed by a rapid return to normal. This enzyme change was followed by increases in alkaline phosphatase and gamma-glutamyltransferase. Serum enzyme changes preceded development of recognizable histologic lesions. Vacuolar changes in hepatocyte nuclei, biliary hyperplasia, and fibrosis sequentially developed in liver biopsy specimens from each animal, whereas megalocytosis was not a predominant feature until necropsy. On the basis of our findings, we suggest that the optimal tests for diagnosis of pyrrolizidine alkaloid intoxication should consist of liver biopsy and determination of concurrent serum liver-enzyme activities.

UR - http://www.scopus.com/inward/record.url?scp=0026268009&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026268009&partnerID=8YFLogxK

M3 - Article

VL - 52

SP - 1969

EP - 1978

JO - American Journal of Veterinary Research

JF - American Journal of Veterinary Research

SN - 0002-9645

IS - 12

ER -