Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice

Helena W Morrison, Jessica A. Filosa

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. In this study we assessed astrocyte Ca2+ dynamics, aquaporin 4 (AQP4) polarity, S100β expression pattern, as well as, microglia morphology and phagocytic marker CD11b in male and female mice following 60 min of middle cerebral artery (MCA) occlusion. We reveal sex differences in the frequency of intracellular astrocyte Ca2+ elevations (F(1,86) = 8.19, P = 0.005) and microglia volume (F(1,40) = 12.47, P = 0.009) immediately following MCA occlusion in acute brain slices. Measured in fixed tissue, AQP4 polarity was disrupted (F(5,86) = 3.30, P = 0.009) and the area of non-S100β immunoreactivity increased in ipsilateral brain regions after 60 min of MCA occlusion (F(5,86) = 4.72, P = 0.007). However, astrocyte changes were robust in male mice when compared to females. Additional sex differences were discovered regarding microglia phagocytic receptor CD11b. In sham mice, constitutively high CD11b immunofluorescence was observed in females when compared to males (P = 0.03). When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P = 0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.

Original languageEnglish (US)
Pages (from-to)85-99
Number of pages15
JournalNeuroscience
Volume339
DOIs
StatePublished - Dec 17 2016
Externally publishedYes

Fingerprint

Middle Cerebral Artery Infarction
Microglia
Sex Characteristics
Astrocytes
Stroke
Aquaporin 4
Neuroglia
Sexual Development
Brain
Fluorescent Antibody Technique
Epidemiologic Studies
Ischemia

Keywords

  • aquaporin 4
  • calcium
  • CD11B
  • ischemic stroke
  • microglia morphology
  • S100β

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. / Morrison, Helena W; Filosa, Jessica A.

In: Neuroscience, Vol. 339, 17.12.2016, p. 85-99.

Research output: Contribution to journalArticle

@article{3f0edab9884c4460aa18a6b06e558279,
title = "Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice",
abstract = "Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. In this study we assessed astrocyte Ca2+ dynamics, aquaporin 4 (AQP4) polarity, S100β expression pattern, as well as, microglia morphology and phagocytic marker CD11b in male and female mice following 60 min of middle cerebral artery (MCA) occlusion. We reveal sex differences in the frequency of intracellular astrocyte Ca2+ elevations (F(1,86) = 8.19, P = 0.005) and microglia volume (F(1,40) = 12.47, P = 0.009) immediately following MCA occlusion in acute brain slices. Measured in fixed tissue, AQP4 polarity was disrupted (F(5,86) = 3.30, P = 0.009) and the area of non-S100β immunoreactivity increased in ipsilateral brain regions after 60 min of MCA occlusion (F(5,86) = 4.72, P = 0.007). However, astrocyte changes were robust in male mice when compared to females. Additional sex differences were discovered regarding microglia phagocytic receptor CD11b. In sham mice, constitutively high CD11b immunofluorescence was observed in females when compared to males (P = 0.03). When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P = 0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.",
keywords = "aquaporin 4, calcium, CD11B, ischemic stroke, microglia morphology, S100β",
author = "Morrison, {Helena W} and Filosa, {Jessica A.}",
year = "2016",
month = "12",
day = "17",
doi = "10.1016/j.neuroscience.2016.09.047",
language = "English (US)",
volume = "339",
pages = "85--99",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice

AU - Morrison, Helena W

AU - Filosa, Jessica A.

PY - 2016/12/17

Y1 - 2016/12/17

N2 - Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. In this study we assessed astrocyte Ca2+ dynamics, aquaporin 4 (AQP4) polarity, S100β expression pattern, as well as, microglia morphology and phagocytic marker CD11b in male and female mice following 60 min of middle cerebral artery (MCA) occlusion. We reveal sex differences in the frequency of intracellular astrocyte Ca2+ elevations (F(1,86) = 8.19, P = 0.005) and microglia volume (F(1,40) = 12.47, P = 0.009) immediately following MCA occlusion in acute brain slices. Measured in fixed tissue, AQP4 polarity was disrupted (F(5,86) = 3.30, P = 0.009) and the area of non-S100β immunoreactivity increased in ipsilateral brain regions after 60 min of MCA occlusion (F(5,86) = 4.72, P = 0.007). However, astrocyte changes were robust in male mice when compared to females. Additional sex differences were discovered regarding microglia phagocytic receptor CD11b. In sham mice, constitutively high CD11b immunofluorescence was observed in females when compared to males (P = 0.03). When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P = 0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.

AB - Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. In this study we assessed astrocyte Ca2+ dynamics, aquaporin 4 (AQP4) polarity, S100β expression pattern, as well as, microglia morphology and phagocytic marker CD11b in male and female mice following 60 min of middle cerebral artery (MCA) occlusion. We reveal sex differences in the frequency of intracellular astrocyte Ca2+ elevations (F(1,86) = 8.19, P = 0.005) and microglia volume (F(1,40) = 12.47, P = 0.009) immediately following MCA occlusion in acute brain slices. Measured in fixed tissue, AQP4 polarity was disrupted (F(5,86) = 3.30, P = 0.009) and the area of non-S100β immunoreactivity increased in ipsilateral brain regions after 60 min of MCA occlusion (F(5,86) = 4.72, P = 0.007). However, astrocyte changes were robust in male mice when compared to females. Additional sex differences were discovered regarding microglia phagocytic receptor CD11b. In sham mice, constitutively high CD11b immunofluorescence was observed in females when compared to males (P = 0.03). When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P = 0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.

KW - aquaporin 4

KW - calcium

KW - CD11B

KW - ischemic stroke

KW - microglia morphology

KW - S100β

UR - http://www.scopus.com/inward/record.url?scp=84991824161&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84991824161&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2016.09.047

DO - 10.1016/j.neuroscience.2016.09.047

M3 - Article

C2 - 27717807

AN - SCOPUS:84991824161

VL - 339

SP - 85

EP - 99

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

ER -