Singular stresses in a finite region of two dissimilar viscoelastic materials with traction-free edges

N. Kay, A. Barut, E. Madenci

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Traditional finite element analyses of the stress state in regions with dissimilar viscoelastic materials are incapable of correctly resolving the stress because of the unbounded nature of the stresses. A hybrid formulation is developed utilizing the exact solution for the stress and displacement fields based on the eigenfunction expansion method under general loading. The region has two dissimilar viscoelastic material wedges with perfect bonding, and is not limited to a particular geometric configuration. The solution method is based on the principle of work in conjunction with the use of Laplace transformation to eliminate time dependency. The strength of the singularity is obtained in the time space without resorting to approximate Laplace inversion techniques. However, the intensification of the stress components is obtained by employing an approximate inversion technique.

Original languageEnglish (US)
Pages (from-to)1221-1244
Number of pages24
JournalComputer Methods in Applied Mechanics and Engineering
Volume191
Issue number11-12
DOIs
StatePublished - Jan 4 2002

Keywords

  • Dissimilar
  • Finite
  • Region
  • Singular
  • Stress
  • Viscoelastic
  • Wedge

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Mechanical Engineering
  • Physics and Astronomy(all)
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Singular stresses in a finite region of two dissimilar viscoelastic materials with traction-free edges'. Together they form a unique fingerprint.

Cite this