Sparse modulation coding for increased capacity in volume holographic storage

Brian M. King, Mark A Neifeld

Research output: Contribution to journalArticle

58 Citations (Scopus)

Abstract

In page-oriented memories, data pages commonly consist of comparable numbers of ON and OFF pixels. Data-page sparsity is denned by reduction of the number of ON pixels per page, leading to an increased diffracted power into each pixel. When page retrieval is dominated by a fixed noise floor, the number of pages in the memory is limited by the pixel diffraction efficiency. Sparsity increases the number of storable pages while reducing the amount of user information per page. A detailed analysis of sparsity in volume holographic memories shows that the total memory capacity can be increased by 15% by use of data pages that contain on average 25% ON pixels. Sparsity also helps to reduce the effects of interpixel cross talk by strongly reducing the probability that worst-case pixel patterns (e.g., blocks of ON pixels with a center OFF pixel) will occur in the data page. Enumeration block coding techniques provide construction of sparse-data pages with minimal overhead. In addition, enumeration coding offers maximum-likelihood detection with low encoding-decoding latency. We discuss the theoretical advantages of data-page sparsity. We also present experimental results that demonstrate the proposed capacity gain. The experiment verifies that it is practical to construct and use sparse-data pages that result in an overall user capacity gain of 16% subject to a page retrieval bit-error rate of 10-4.

Original languageEnglish (US)
Pages (from-to)6681-6688
Number of pages8
JournalApplied Optics
Volume39
Issue number35
StatePublished - Dec 10 2000

Fingerprint

coding
Pixels
pixels
Modulation
modulation
Data storage equipment
enumeration
retrieval
Diffraction efficiency
decoding
bit error rate
Bit error rate
Maximum likelihood
Decoding
diffraction
Experiments

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Sparse modulation coding for increased capacity in volume holographic storage. / King, Brian M.; Neifeld, Mark A.

In: Applied Optics, Vol. 39, No. 35, 10.12.2000, p. 6681-6688.

Research output: Contribution to journalArticle

@article{111896931215443c8ea777cb02336b48,
title = "Sparse modulation coding for increased capacity in volume holographic storage",
abstract = "In page-oriented memories, data pages commonly consist of comparable numbers of ON and OFF pixels. Data-page sparsity is denned by reduction of the number of ON pixels per page, leading to an increased diffracted power into each pixel. When page retrieval is dominated by a fixed noise floor, the number of pages in the memory is limited by the pixel diffraction efficiency. Sparsity increases the number of storable pages while reducing the amount of user information per page. A detailed analysis of sparsity in volume holographic memories shows that the total memory capacity can be increased by 15{\%} by use of data pages that contain on average 25{\%} ON pixels. Sparsity also helps to reduce the effects of interpixel cross talk by strongly reducing the probability that worst-case pixel patterns (e.g., blocks of ON pixels with a center OFF pixel) will occur in the data page. Enumeration block coding techniques provide construction of sparse-data pages with minimal overhead. In addition, enumeration coding offers maximum-likelihood detection with low encoding-decoding latency. We discuss the theoretical advantages of data-page sparsity. We also present experimental results that demonstrate the proposed capacity gain. The experiment verifies that it is practical to construct and use sparse-data pages that result in an overall user capacity gain of 16{\%} subject to a page retrieval bit-error rate of 10-4.",
author = "King, {Brian M.} and Neifeld, {Mark A}",
year = "2000",
month = "12",
day = "10",
language = "English (US)",
volume = "39",
pages = "6681--6688",
journal = "Applied Optics",
issn = "1559-128X",
publisher = "The Optical Society",
number = "35",

}

TY - JOUR

T1 - Sparse modulation coding for increased capacity in volume holographic storage

AU - King, Brian M.

AU - Neifeld, Mark A

PY - 2000/12/10

Y1 - 2000/12/10

N2 - In page-oriented memories, data pages commonly consist of comparable numbers of ON and OFF pixels. Data-page sparsity is denned by reduction of the number of ON pixels per page, leading to an increased diffracted power into each pixel. When page retrieval is dominated by a fixed noise floor, the number of pages in the memory is limited by the pixel diffraction efficiency. Sparsity increases the number of storable pages while reducing the amount of user information per page. A detailed analysis of sparsity in volume holographic memories shows that the total memory capacity can be increased by 15% by use of data pages that contain on average 25% ON pixels. Sparsity also helps to reduce the effects of interpixel cross talk by strongly reducing the probability that worst-case pixel patterns (e.g., blocks of ON pixels with a center OFF pixel) will occur in the data page. Enumeration block coding techniques provide construction of sparse-data pages with minimal overhead. In addition, enumeration coding offers maximum-likelihood detection with low encoding-decoding latency. We discuss the theoretical advantages of data-page sparsity. We also present experimental results that demonstrate the proposed capacity gain. The experiment verifies that it is practical to construct and use sparse-data pages that result in an overall user capacity gain of 16% subject to a page retrieval bit-error rate of 10-4.

AB - In page-oriented memories, data pages commonly consist of comparable numbers of ON and OFF pixels. Data-page sparsity is denned by reduction of the number of ON pixels per page, leading to an increased diffracted power into each pixel. When page retrieval is dominated by a fixed noise floor, the number of pages in the memory is limited by the pixel diffraction efficiency. Sparsity increases the number of storable pages while reducing the amount of user information per page. A detailed analysis of sparsity in volume holographic memories shows that the total memory capacity can be increased by 15% by use of data pages that contain on average 25% ON pixels. Sparsity also helps to reduce the effects of interpixel cross talk by strongly reducing the probability that worst-case pixel patterns (e.g., blocks of ON pixels with a center OFF pixel) will occur in the data page. Enumeration block coding techniques provide construction of sparse-data pages with minimal overhead. In addition, enumeration coding offers maximum-likelihood detection with low encoding-decoding latency. We discuss the theoretical advantages of data-page sparsity. We also present experimental results that demonstrate the proposed capacity gain. The experiment verifies that it is practical to construct and use sparse-data pages that result in an overall user capacity gain of 16% subject to a page retrieval bit-error rate of 10-4.

UR - http://www.scopus.com/inward/record.url?scp=0001111378&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001111378&partnerID=8YFLogxK

M3 - Article

C2 - 18354682

AN - SCOPUS:0001111378

VL - 39

SP - 6681

EP - 6688

JO - Applied Optics

JF - Applied Optics

SN - 1559-128X

IS - 35

ER -