Spatiotemporal variability of summer precipitation in southeastern arizona

Susan Stillman, Xubin Zeng, William J. Shuttleworth, David C. Goodrich, Carl L. Unkrich, Marek Zreda

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

The Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona covers ~150km2 and receives the majority of its annual precipitation from highly variable and intermittent summer storms during the North American monsoon. In this study, the patterns of precipitation in the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) 88-rain-gauge network are analyzed for July through September from 1956 to 2011. Because small-scale convective systems generate most of this summer rainfall, the total (T), intensity (I), and frequency (F) exhibit high spatial and temporal variability. Although subsidiary periods may have apparent trends, no significant trends in T, I, and F were found for the study period as a whole. Observed trends in the spatial coverage of storms change sign in the late 1970s, and the multidecadal variation in I and spatial coverage of storms have statistically significant correlation with the Pacific decadal oscillation and the Atlantic multidecadal oscillation indices. Precipitation has a pronounced diurnal cycle with the highest T and F occurring between 1500 and 2200 LT, and its average fractional coverage over 2-and 12-h periods is less than 40% and 60% of the gauges, respectively. Although more gauges are needed to estimate area-averaged daily precipitation, 5-11 gauges can provide a reasonable estimate of the area-averaged monthly total precipitation during the period from July through September.

Original languageEnglish (US)
Pages (from-to)1944-1951
Number of pages8
JournalJournal of Hydrometeorology
Volume14
Issue number6
DOIs
StatePublished - Dec 1 2013

Keywords

  • Interannual variability
  • Monsoons
  • Multidecadal variability
  • Precipitation
  • Trends

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint Dive into the research topics of 'Spatiotemporal variability of summer precipitation in southeastern arizona'. Together they form a unique fingerprint.

  • Cite this