Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy

Sarah D. Cady, Jun Wang, Yibing Wu, William F. Degrado, Mei Hong

Research output: Contribution to journalArticle

67 Citations (Scopus)

Abstract

The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as dodecylphosphocholine (DPC) micelles. 13C-2H rotational-echo double-resonance NMR experiments of 13C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in DPC micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18-60) bound to lipid bilayers. Specific 2H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the channel, but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of this membrane protein.

Original languageEnglish (US)
Pages (from-to)4274-4284
Number of pages11
JournalJournal of the American Chemical Society
Volume133
Issue number12
DOIs
StatePublished - Mar 30 2011
Externally publishedYes

Fingerprint

Adamantane
Lipid bilayers
Rimantadine
Lipid Bilayers
Micelles
Human Influenza
Nuclear magnetic resonance spectroscopy
Amines
Protons
Magnetic Resonance Spectroscopy
Proteins
Amantadine
Detergents
Pharmaceutical Preparations
Drug Labeling
Nuclear magnetic resonance
Equilibrium constants
Chemical shift
Binding sites
Viruses

ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

@article{973fda4308e94b79b29832792bf8efeb,
title = "Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy",
abstract = "The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as dodecylphosphocholine (DPC) micelles. 13C-2H rotational-echo double-resonance NMR experiments of 13C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in DPC micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18-60) bound to lipid bilayers. Specific 2H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the channel, but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of this membrane protein.",
author = "Cady, {Sarah D.} and Jun Wang and Yibing Wu and Degrado, {William F.} and Mei Hong",
year = "2011",
month = "3",
day = "30",
doi = "10.1021/ja102581n",
language = "English (US)",
volume = "133",
pages = "4274--4284",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "12",

}

TY - JOUR

T1 - Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy

AU - Cady, Sarah D.

AU - Wang, Jun

AU - Wu, Yibing

AU - Degrado, William F.

AU - Hong, Mei

PY - 2011/3/30

Y1 - 2011/3/30

N2 - The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as dodecylphosphocholine (DPC) micelles. 13C-2H rotational-echo double-resonance NMR experiments of 13C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in DPC micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18-60) bound to lipid bilayers. Specific 2H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the channel, but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of this membrane protein.

AB - The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as dodecylphosphocholine (DPC) micelles. 13C-2H rotational-echo double-resonance NMR experiments of 13C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in DPC micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18-60) bound to lipid bilayers. Specific 2H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the channel, but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of this membrane protein.

UR - http://www.scopus.com/inward/record.url?scp=79953041331&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953041331&partnerID=8YFLogxK

U2 - 10.1021/ja102581n

DO - 10.1021/ja102581n

M3 - Article

C2 - 21381693

AN - SCOPUS:79953041331

VL - 133

SP - 4274

EP - 4284

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 12

ER -