Specific high-affinity binding and biologic action of retinoic acid in human neuroblastoma cell lines

Mark R Haussler, N. Sidell, M. Kelly, C. Donaldson, A. Altman, D. Mangelsdorf

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

Neuroblastoma cells are a good model for neuronal development because of their ability to extend neurites in response to various stimuli, including retinoic acid. In the present experiments, we have examined five human neuroblastoma cell lines (LA-N-1, IMR-32, LA-N-5, SK-N-MC, and CHP-100) for the presence of cellular retinoic acid binding protein (CRABP), a receptor-like protein implicated in the molecular functioning of vitamin A. CRABP is identified and quantitated by sucrose gradient centrifugation, selective inhibition by the mercurial reagent p-chloromercuribenzene sulfonic acid (PCMBS), and saturation analysis. All five lines contain significant levels of cytosolic CRABP (2.5-7.5 pmol/mg of protein), which display typical properties of specific high affinity retinoic acid binding, a sedimentation coefficient of 2 S, and inhibition by PCMBS. Three of the lines (LA-N-1, IMR-32, and LA-N-5) are strongly growth inhibited by 1 μM retinoic acid in monolayer culture, whereas two (LA-N-1 and LA-N-5) undergo marked differentiation to a stellate, fusiform morphology with characteristic neurite outgrowths. The SK-N-MC and CHP-100 lines are relatively resistant to the antiproliferative effects of retinoic acid under these conditions. Nevertheless, all five lines are effectively inhibited by retinoic acid in their ability to form anchorage-independent colonies in soft agar. Thus, although CRABP is not necessarily correlated with growth inhibition in monolayer culture, it is associated with retinoic acid's ability to inhibit neuroblastoma colony formation in soft agar. More experiments will be required to determine if this effect on growth in soft agar reflects the putative ability of retinoic acid to convert tumorigenic neuroblastoma cell lines into the normal differentiated phenotype.

Original languageEnglish (US)
Pages (from-to)5525-5529
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume80
Issue number181
StatePublished - 1983

Fingerprint

Tretinoin
Neuroblastoma
Retinoic Acid Receptors
Cell Line
4-Chloromercuribenzenesulfonate
Agar
Growth
Neurites
Vitamin A
Centrifugation
Sucrose
Proteins
Phenotype

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

Specific high-affinity binding and biologic action of retinoic acid in human neuroblastoma cell lines. / Haussler, Mark R; Sidell, N.; Kelly, M.; Donaldson, C.; Altman, A.; Mangelsdorf, D.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 80, No. 181, 1983, p. 5525-5529.

Research output: Contribution to journalArticle

@article{9005c119476d4360ba79305621827752,
title = "Specific high-affinity binding and biologic action of retinoic acid in human neuroblastoma cell lines",
abstract = "Neuroblastoma cells are a good model for neuronal development because of their ability to extend neurites in response to various stimuli, including retinoic acid. In the present experiments, we have examined five human neuroblastoma cell lines (LA-N-1, IMR-32, LA-N-5, SK-N-MC, and CHP-100) for the presence of cellular retinoic acid binding protein (CRABP), a receptor-like protein implicated in the molecular functioning of vitamin A. CRABP is identified and quantitated by sucrose gradient centrifugation, selective inhibition by the mercurial reagent p-chloromercuribenzene sulfonic acid (PCMBS), and saturation analysis. All five lines contain significant levels of cytosolic CRABP (2.5-7.5 pmol/mg of protein), which display typical properties of specific high affinity retinoic acid binding, a sedimentation coefficient of 2 S, and inhibition by PCMBS. Three of the lines (LA-N-1, IMR-32, and LA-N-5) are strongly growth inhibited by 1 μM retinoic acid in monolayer culture, whereas two (LA-N-1 and LA-N-5) undergo marked differentiation to a stellate, fusiform morphology with characteristic neurite outgrowths. The SK-N-MC and CHP-100 lines are relatively resistant to the antiproliferative effects of retinoic acid under these conditions. Nevertheless, all five lines are effectively inhibited by retinoic acid in their ability to form anchorage-independent colonies in soft agar. Thus, although CRABP is not necessarily correlated with growth inhibition in monolayer culture, it is associated with retinoic acid's ability to inhibit neuroblastoma colony formation in soft agar. More experiments will be required to determine if this effect on growth in soft agar reflects the putative ability of retinoic acid to convert tumorigenic neuroblastoma cell lines into the normal differentiated phenotype.",
author = "Haussler, {Mark R} and N. Sidell and M. Kelly and C. Donaldson and A. Altman and D. Mangelsdorf",
year = "1983",
language = "English (US)",
volume = "80",
pages = "5525--5529",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "181",

}

TY - JOUR

T1 - Specific high-affinity binding and biologic action of retinoic acid in human neuroblastoma cell lines

AU - Haussler, Mark R

AU - Sidell, N.

AU - Kelly, M.

AU - Donaldson, C.

AU - Altman, A.

AU - Mangelsdorf, D.

PY - 1983

Y1 - 1983

N2 - Neuroblastoma cells are a good model for neuronal development because of their ability to extend neurites in response to various stimuli, including retinoic acid. In the present experiments, we have examined five human neuroblastoma cell lines (LA-N-1, IMR-32, LA-N-5, SK-N-MC, and CHP-100) for the presence of cellular retinoic acid binding protein (CRABP), a receptor-like protein implicated in the molecular functioning of vitamin A. CRABP is identified and quantitated by sucrose gradient centrifugation, selective inhibition by the mercurial reagent p-chloromercuribenzene sulfonic acid (PCMBS), and saturation analysis. All five lines contain significant levels of cytosolic CRABP (2.5-7.5 pmol/mg of protein), which display typical properties of specific high affinity retinoic acid binding, a sedimentation coefficient of 2 S, and inhibition by PCMBS. Three of the lines (LA-N-1, IMR-32, and LA-N-5) are strongly growth inhibited by 1 μM retinoic acid in monolayer culture, whereas two (LA-N-1 and LA-N-5) undergo marked differentiation to a stellate, fusiform morphology with characteristic neurite outgrowths. The SK-N-MC and CHP-100 lines are relatively resistant to the antiproliferative effects of retinoic acid under these conditions. Nevertheless, all five lines are effectively inhibited by retinoic acid in their ability to form anchorage-independent colonies in soft agar. Thus, although CRABP is not necessarily correlated with growth inhibition in monolayer culture, it is associated with retinoic acid's ability to inhibit neuroblastoma colony formation in soft agar. More experiments will be required to determine if this effect on growth in soft agar reflects the putative ability of retinoic acid to convert tumorigenic neuroblastoma cell lines into the normal differentiated phenotype.

AB - Neuroblastoma cells are a good model for neuronal development because of their ability to extend neurites in response to various stimuli, including retinoic acid. In the present experiments, we have examined five human neuroblastoma cell lines (LA-N-1, IMR-32, LA-N-5, SK-N-MC, and CHP-100) for the presence of cellular retinoic acid binding protein (CRABP), a receptor-like protein implicated in the molecular functioning of vitamin A. CRABP is identified and quantitated by sucrose gradient centrifugation, selective inhibition by the mercurial reagent p-chloromercuribenzene sulfonic acid (PCMBS), and saturation analysis. All five lines contain significant levels of cytosolic CRABP (2.5-7.5 pmol/mg of protein), which display typical properties of specific high affinity retinoic acid binding, a sedimentation coefficient of 2 S, and inhibition by PCMBS. Three of the lines (LA-N-1, IMR-32, and LA-N-5) are strongly growth inhibited by 1 μM retinoic acid in monolayer culture, whereas two (LA-N-1 and LA-N-5) undergo marked differentiation to a stellate, fusiform morphology with characteristic neurite outgrowths. The SK-N-MC and CHP-100 lines are relatively resistant to the antiproliferative effects of retinoic acid under these conditions. Nevertheless, all five lines are effectively inhibited by retinoic acid in their ability to form anchorage-independent colonies in soft agar. Thus, although CRABP is not necessarily correlated with growth inhibition in monolayer culture, it is associated with retinoic acid's ability to inhibit neuroblastoma colony formation in soft agar. More experiments will be required to determine if this effect on growth in soft agar reflects the putative ability of retinoic acid to convert tumorigenic neuroblastoma cell lines into the normal differentiated phenotype.

UR - http://www.scopus.com/inward/record.url?scp=0021090234&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021090234&partnerID=8YFLogxK

M3 - Article

VL - 80

SP - 5525

EP - 5529

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 181

ER -