Spin-dependent trapping of electrons at spinterfaces

Sabine Steil, Nicolas Großmann, Martin Laux, Andreas Ruffing, Daniel Steil, Martin Wiesenmayer, Stefan Mathias, Oliver L.A. Monti, Mirko Cinchetti, Martin Aeschlimann

Research output: Contribution to journalArticlepeer-review

125 Scopus citations

Abstract

Hybrid ferromagnetic metal/organic interfaces - also known as spinterfaces - can exhibit highly efficient spin-filtering properties and therefore present a promising class of materials for the future development of new spintronic devices. Advancing the field depends critically on elucidating the fundamental microscopic processes that eventually determine the spin-filtering properties in such hybrid structures. Here, we study the femtosecond spin dynamics at the prototypical interface between cobalt and the metalorganic complex tris(8-hydroxyquinolinato)aluminium. To disentangle the microscopic origin of spin filtering, we optically generate a transient spin polarization in a well-defined hybrid interface state that we follow with a spin-resolved real-time pump-probe two-photon photoemission experiment. We find that the electrons are trapped at the interface in a spin-dependent manner for a surprisingly long time of the order of 0.5-1 ps. We conclude that ferromagnetic metal/organic interfaces act as spin filters because electrons are trapped in hybrid interface states by spin-dependent confining potentials.

Original languageEnglish (US)
Pages (from-to)242-247
Number of pages6
JournalNature Physics
Volume9
Issue number4
DOIs
StatePublished - Apr 2013

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Spin-dependent trapping of electrons at spinterfaces'. Together they form a unique fingerprint.

Cite this