Src Family Kinase Links Insulin Signaling to Short Term Regulation of Na,K-ATPase in Nonpigmented Ciliary Epithelium

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Insulin has been shown to elicit changes of Na,K-ATPase activity in various tissues. Na,K-ATPase in the nonpigmented ciliary epithelium (NPE) plays a role in aqueous humor secretion and changes of Na,K-ATPase activity impact the driving force. Because we detect a change of NPE Na,K-ATPase activity in response to insulin, studies were carried out to examine the response mechanism. Ouabain-sensitive rubidium (Rb) uptake by cultured NPE cells, measured as a functional index of Na,K-ATPase-mediated inward potassium transport, was found to increase in cells exposed for 5 min to insulin. The maximally effective concentration was 100 nM. An intrinsic increase of Na,K-ATPase activity evident as a >2-fold increase in the rate of ouabain-sensitive ATP hydrolysis in homogenates obtained from cells exposed to 100 nM insulin for 5 min was also observed. Insulin-treated cells exhibited Akt, Src family kinase (SFK), ERK1/2, and p38 activation, all of which were prevented by a pI3 kinase inhibitor LY294002. The Rb uptake and Na,K-ATPase activity response to insulin both were abolished by PP2, an SFK inhibitor which also prevented p38 and ERK1/2 but not Akt activation. The Akt inhibitor MK-2206 did not change the Na,K-ATPase response to insulin. The findings suggest insulin activates pI3K-dependent Akt and SFK signaling pathways that are separate. ERK1/2 and p38 activation is secondary to and dependent on SFK activation. The increase of Na,K-ATPase activity is dependent on activation of the SFK pathway. The findings are consistent with previous studies that indicate a link between Na,K-ATPase activity and SFK signaling. J. Cell. Physiol. 232: 1489–1500, 2017.

Original languageEnglish (US)
Pages (from-to)1489-1500
Number of pages12
JournalJournal of Cellular Physiology
Volume232
Issue number6
DOIs
StatePublished - Jun 1 2017

Fingerprint

src-Family Kinases
Adenosine Triphosphatases
Epithelium
Insulin
Chemical activation
Rubidium
Ouabain
sodium-translocating ATPase
2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
Aqueous Humor
Hydrolysis
Potassium
Phosphotransferases
Thermodynamic properties
Adenosine Triphosphate
Cells
Tissue

ASJC Scopus subject areas

  • Medicine(all)
  • Physiology
  • Clinical Biochemistry
  • Cell Biology

Cite this

@article{e88ef080879f4943890bb30c0e80a72e,
title = "Src Family Kinase Links Insulin Signaling to Short Term Regulation of Na,K-ATPase in Nonpigmented Ciliary Epithelium",
abstract = "Insulin has been shown to elicit changes of Na,K-ATPase activity in various tissues. Na,K-ATPase in the nonpigmented ciliary epithelium (NPE) plays a role in aqueous humor secretion and changes of Na,K-ATPase activity impact the driving force. Because we detect a change of NPE Na,K-ATPase activity in response to insulin, studies were carried out to examine the response mechanism. Ouabain-sensitive rubidium (Rb) uptake by cultured NPE cells, measured as a functional index of Na,K-ATPase-mediated inward potassium transport, was found to increase in cells exposed for 5 min to insulin. The maximally effective concentration was 100 nM. An intrinsic increase of Na,K-ATPase activity evident as a >2-fold increase in the rate of ouabain-sensitive ATP hydrolysis in homogenates obtained from cells exposed to 100 nM insulin for 5 min was also observed. Insulin-treated cells exhibited Akt, Src family kinase (SFK), ERK1/2, and p38 activation, all of which were prevented by a pI3 kinase inhibitor LY294002. The Rb uptake and Na,K-ATPase activity response to insulin both were abolished by PP2, an SFK inhibitor which also prevented p38 and ERK1/2 but not Akt activation. The Akt inhibitor MK-2206 did not change the Na,K-ATPase response to insulin. The findings suggest insulin activates pI3K-dependent Akt and SFK signaling pathways that are separate. ERK1/2 and p38 activation is secondary to and dependent on SFK activation. The increase of Na,K-ATPase activity is dependent on activation of the SFK pathway. The findings are consistent with previous studies that indicate a link between Na,K-ATPase activity and SFK signaling. J. Cell. Physiol. 232: 1489–1500, 2017.",
author = "Shahidullah, {Mohammad -} and Amritlal Mandal and Delamere, {Nicholas A}",
year = "2017",
month = "6",
day = "1",
doi = "10.1002/jcp.25654",
language = "English (US)",
volume = "232",
pages = "1489--1500",
journal = "Journal of Cellular Physiology",
issn = "0021-9541",
publisher = "Wiley-Liss Inc.",
number = "6",

}

TY - JOUR

T1 - Src Family Kinase Links Insulin Signaling to Short Term Regulation of Na,K-ATPase in Nonpigmented Ciliary Epithelium

AU - Shahidullah, Mohammad -

AU - Mandal, Amritlal

AU - Delamere, Nicholas A

PY - 2017/6/1

Y1 - 2017/6/1

N2 - Insulin has been shown to elicit changes of Na,K-ATPase activity in various tissues. Na,K-ATPase in the nonpigmented ciliary epithelium (NPE) plays a role in aqueous humor secretion and changes of Na,K-ATPase activity impact the driving force. Because we detect a change of NPE Na,K-ATPase activity in response to insulin, studies were carried out to examine the response mechanism. Ouabain-sensitive rubidium (Rb) uptake by cultured NPE cells, measured as a functional index of Na,K-ATPase-mediated inward potassium transport, was found to increase in cells exposed for 5 min to insulin. The maximally effective concentration was 100 nM. An intrinsic increase of Na,K-ATPase activity evident as a >2-fold increase in the rate of ouabain-sensitive ATP hydrolysis in homogenates obtained from cells exposed to 100 nM insulin for 5 min was also observed. Insulin-treated cells exhibited Akt, Src family kinase (SFK), ERK1/2, and p38 activation, all of which were prevented by a pI3 kinase inhibitor LY294002. The Rb uptake and Na,K-ATPase activity response to insulin both were abolished by PP2, an SFK inhibitor which also prevented p38 and ERK1/2 but not Akt activation. The Akt inhibitor MK-2206 did not change the Na,K-ATPase response to insulin. The findings suggest insulin activates pI3K-dependent Akt and SFK signaling pathways that are separate. ERK1/2 and p38 activation is secondary to and dependent on SFK activation. The increase of Na,K-ATPase activity is dependent on activation of the SFK pathway. The findings are consistent with previous studies that indicate a link between Na,K-ATPase activity and SFK signaling. J. Cell. Physiol. 232: 1489–1500, 2017.

AB - Insulin has been shown to elicit changes of Na,K-ATPase activity in various tissues. Na,K-ATPase in the nonpigmented ciliary epithelium (NPE) plays a role in aqueous humor secretion and changes of Na,K-ATPase activity impact the driving force. Because we detect a change of NPE Na,K-ATPase activity in response to insulin, studies were carried out to examine the response mechanism. Ouabain-sensitive rubidium (Rb) uptake by cultured NPE cells, measured as a functional index of Na,K-ATPase-mediated inward potassium transport, was found to increase in cells exposed for 5 min to insulin. The maximally effective concentration was 100 nM. An intrinsic increase of Na,K-ATPase activity evident as a >2-fold increase in the rate of ouabain-sensitive ATP hydrolysis in homogenates obtained from cells exposed to 100 nM insulin for 5 min was also observed. Insulin-treated cells exhibited Akt, Src family kinase (SFK), ERK1/2, and p38 activation, all of which were prevented by a pI3 kinase inhibitor LY294002. The Rb uptake and Na,K-ATPase activity response to insulin both were abolished by PP2, an SFK inhibitor which also prevented p38 and ERK1/2 but not Akt activation. The Akt inhibitor MK-2206 did not change the Na,K-ATPase response to insulin. The findings suggest insulin activates pI3K-dependent Akt and SFK signaling pathways that are separate. ERK1/2 and p38 activation is secondary to and dependent on SFK activation. The increase of Na,K-ATPase activity is dependent on activation of the SFK pathway. The findings are consistent with previous studies that indicate a link between Na,K-ATPase activity and SFK signaling. J. Cell. Physiol. 232: 1489–1500, 2017.

UR - http://www.scopus.com/inward/record.url?scp=85000796991&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85000796991&partnerID=8YFLogxK

U2 - 10.1002/jcp.25654

DO - 10.1002/jcp.25654

M3 - Article

C2 - 27748508

AN - SCOPUS:85000796991

VL - 232

SP - 1489

EP - 1500

JO - Journal of Cellular Physiology

JF - Journal of Cellular Physiology

SN - 0021-9541

IS - 6

ER -