Staurolite stability and related parageneses

Theory, experiments, and applications

Research output: Contribution to journalArticle

93 Citations (Scopus)

Abstract

The results of recent investigations on the stability limits of staurolite have been combined together with those of the present study to develop a semi-quantitative model of the P-T-fo2-X relations of staurolite±quartz±magnetite. The problem with respect to the hydroxyl content of staurolite has been analysed; it is concluded that no evidence has yet been mustered to discount the idealised stoichiometry proposed by Naray-Szabó & Sasvari (1958), at least as a limiting composition. The stability limits of staurolite±magnetite have been calculated from the experimental data for the equilibria involving quartz. Also the conditions over which the assemblage cordierite+magnetite+quartz could be stable, as well as a quantitative model for the fo2-P stability of almandine ± quartz have been deduced theoretically.An analysis is presented of the paragenetic relations of staurolite in common pelitic schists. It is suggested that the formation of staurolite at the expense of either chloritoid or chlorite, rather than the unqualified first appearance of staurolite as proposed by Winkler (1970), should define a 'staurolite-in' isograd in the range of 500-575 °C. In regional metamorphism, chloritoid, staurolite, and aluminum silicates should, under equilibrium conditions, be unstable relative to almandine in graphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartz↑almandine+O2+H2O). The limits of P-T conditions over which staurolite and cordierite may coexist in natural assemblages have been deduced; it is restricted, almost entirely within the field of andalusite, between 500-700 °C, and 2-6 kbars, thus defining the range of P-T conditions for the 'low-pressure intermediate'- or 'Buchan'-type amphibolite facies discussed by Miyashiro (1961). In assemblages involving staurolite and andalusite, cordierite rather than almandine should usually be stable; the reverse holds for assemblages involving staurolite and sillimanite.

Original languageEnglish (US)
Pages (from-to)335-365
Number of pages31
JournalJournal of Petrology
Volume13
Issue number2
DOIs
StatePublished - Jun 1972
Externally publishedYes

Fingerprint

staurolite
Magnetite
paragenesis
cordierite
Quartz
magnetite
silicates
schist
quartz
Experiment
P-stability
experiment
Ferrosoferric Oxide
Experiments
aluminum silicates
chloritoid
almandine
Stoichiometry
Silicates
Discount

ASJC Scopus subject areas

  • Molecular Biology
  • Statistics and Probability
  • Computational Mathematics
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Geophysics
  • Geochemistry and Petrology

Cite this

Staurolite stability and related parageneses : Theory, experiments, and applications. / Ganguly, Jibamitra.

In: Journal of Petrology, Vol. 13, No. 2, 06.1972, p. 335-365.

Research output: Contribution to journalArticle

@article{1b99806803c244a8825c8f719c4754c6,
title = "Staurolite stability and related parageneses: Theory, experiments, and applications",
abstract = "The results of recent investigations on the stability limits of staurolite have been combined together with those of the present study to develop a semi-quantitative model of the P-T-fo2-X relations of staurolite±quartz±magnetite. The problem with respect to the hydroxyl content of staurolite has been analysed; it is concluded that no evidence has yet been mustered to discount the idealised stoichiometry proposed by Naray-Szab{\'o} & Sasvari (1958), at least as a limiting composition. The stability limits of staurolite±magnetite have been calculated from the experimental data for the equilibria involving quartz. Also the conditions over which the assemblage cordierite+magnetite+quartz could be stable, as well as a quantitative model for the fo2-P stability of almandine ± quartz have been deduced theoretically.An analysis is presented of the paragenetic relations of staurolite in common pelitic schists. It is suggested that the formation of staurolite at the expense of either chloritoid or chlorite, rather than the unqualified first appearance of staurolite as proposed by Winkler (1970), should define a 'staurolite-in' isograd in the range of 500-575 °C. In regional metamorphism, chloritoid, staurolite, and aluminum silicates should, under equilibrium conditions, be unstable relative to almandine in graphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartz↑almandine+O2+H2O). The limits of P-T conditions over which staurolite and cordierite may coexist in natural assemblages have been deduced; it is restricted, almost entirely within the field of andalusite, between 500-700 °C, and 2-6 kbars, thus defining the range of P-T conditions for the 'low-pressure intermediate'- or 'Buchan'-type amphibolite facies discussed by Miyashiro (1961). In assemblages involving staurolite and andalusite, cordierite rather than almandine should usually be stable; the reverse holds for assemblages involving staurolite and sillimanite.",
author = "Jibamitra Ganguly",
year = "1972",
month = "6",
doi = "10.1093/petrology/13.2.335",
language = "English (US)",
volume = "13",
pages = "335--365",
journal = "Journal of Petrology",
issn = "0022-3530",
publisher = "Oxford University Press",
number = "2",

}

TY - JOUR

T1 - Staurolite stability and related parageneses

T2 - Theory, experiments, and applications

AU - Ganguly, Jibamitra

PY - 1972/6

Y1 - 1972/6

N2 - The results of recent investigations on the stability limits of staurolite have been combined together with those of the present study to develop a semi-quantitative model of the P-T-fo2-X relations of staurolite±quartz±magnetite. The problem with respect to the hydroxyl content of staurolite has been analysed; it is concluded that no evidence has yet been mustered to discount the idealised stoichiometry proposed by Naray-Szabó & Sasvari (1958), at least as a limiting composition. The stability limits of staurolite±magnetite have been calculated from the experimental data for the equilibria involving quartz. Also the conditions over which the assemblage cordierite+magnetite+quartz could be stable, as well as a quantitative model for the fo2-P stability of almandine ± quartz have been deduced theoretically.An analysis is presented of the paragenetic relations of staurolite in common pelitic schists. It is suggested that the formation of staurolite at the expense of either chloritoid or chlorite, rather than the unqualified first appearance of staurolite as proposed by Winkler (1970), should define a 'staurolite-in' isograd in the range of 500-575 °C. In regional metamorphism, chloritoid, staurolite, and aluminum silicates should, under equilibrium conditions, be unstable relative to almandine in graphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartz↑almandine+O2+H2O). The limits of P-T conditions over which staurolite and cordierite may coexist in natural assemblages have been deduced; it is restricted, almost entirely within the field of andalusite, between 500-700 °C, and 2-6 kbars, thus defining the range of P-T conditions for the 'low-pressure intermediate'- or 'Buchan'-type amphibolite facies discussed by Miyashiro (1961). In assemblages involving staurolite and andalusite, cordierite rather than almandine should usually be stable; the reverse holds for assemblages involving staurolite and sillimanite.

AB - The results of recent investigations on the stability limits of staurolite have been combined together with those of the present study to develop a semi-quantitative model of the P-T-fo2-X relations of staurolite±quartz±magnetite. The problem with respect to the hydroxyl content of staurolite has been analysed; it is concluded that no evidence has yet been mustered to discount the idealised stoichiometry proposed by Naray-Szabó & Sasvari (1958), at least as a limiting composition. The stability limits of staurolite±magnetite have been calculated from the experimental data for the equilibria involving quartz. Also the conditions over which the assemblage cordierite+magnetite+quartz could be stable, as well as a quantitative model for the fo2-P stability of almandine ± quartz have been deduced theoretically.An analysis is presented of the paragenetic relations of staurolite in common pelitic schists. It is suggested that the formation of staurolite at the expense of either chloritoid or chlorite, rather than the unqualified first appearance of staurolite as proposed by Winkler (1970), should define a 'staurolite-in' isograd in the range of 500-575 °C. In regional metamorphism, chloritoid, staurolite, and aluminum silicates should, under equilibrium conditions, be unstable relative to almandine in graphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartz↑almandine+O2+H2O). The limits of P-T conditions over which staurolite and cordierite may coexist in natural assemblages have been deduced; it is restricted, almost entirely within the field of andalusite, between 500-700 °C, and 2-6 kbars, thus defining the range of P-T conditions for the 'low-pressure intermediate'- or 'Buchan'-type amphibolite facies discussed by Miyashiro (1961). In assemblages involving staurolite and andalusite, cordierite rather than almandine should usually be stable; the reverse holds for assemblages involving staurolite and sillimanite.

UR - http://www.scopus.com/inward/record.url?scp=0141487195&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141487195&partnerID=8YFLogxK

U2 - 10.1093/petrology/13.2.335

DO - 10.1093/petrology/13.2.335

M3 - Article

VL - 13

SP - 335

EP - 365

JO - Journal of Petrology

JF - Journal of Petrology

SN - 0022-3530

IS - 2

ER -