Sternomastoid, rib cage, and expiratory muscle activity during weaning failure

Sairam Parthasarathy, Amal Jubran, Franco Laghi, Martin J. Tobin

Research output: Contribution to journalArticle

62 Scopus citations

Abstract

We hypothesized that patients who fail weaning from mechanical ventilation recruit their inspiratory rib cage muscles sooner than they recruit their expiratory muscles, and that rib cage muscle recruitment is accompanied by recruitment of sternomastoid muscles. Accordingly, we measured sternomastoid electrical activity and changes in esophageal (ΔPes) and gastric pressure (ΔPga) in 11 weaning-failure and 8 weaning-success patients. At the start of trial, failure patients exhibited a higher ΔPga-to-ΔPes ratio than did success patients (P = 0.05), whereas expiratory rise in Pga was equivalent in the two groups. Between the start and end of the trial, failure patients developed additional increases in ΔPga-to-ΔPes ratio (P < 0.0014) and the expiratory rise in Pga also increased (P < 0.004). At the start of trial, sternomastoid activity was present in 8 of 11 failure patients contrasted with 1 of 8 success patients. Over the course of the trial, sternomastoid activity increased by 53.0 ± 9.3% in the failure patients (P = 0.0005), whereas it did not change in the success patients. Failure patients recruited their respiratory muscles in a sequential manner. The sequence began with activity of diaphragm and greater-than-normal activity of inspiratory rib cage muscles; recruitment of sternomastoids and rib cage muscles approached near maximum within 4 min of trial commencement; expiratory muscles were recruited slowest of all. In conclusion, not only is activity of the inspiratory rib cage muscles increased during a failed weaning trial, but respiratory centers also recruit sternomastoid and expiratory muscles. Extradiaphragmatic muscle recruitment may be a mechanism for offsetting the effects of increased load on a weak diaphragm.

Original languageEnglish (US)
Pages (from-to)140-147
Number of pages8
JournalJournal of Applied Physiology
Volume103
Issue number1
DOIs
StatePublished - Jul 1 2007

    Fingerprint

Keywords

  • Mechanical ventilation
  • Respiratory muscles
  • Sternomastoid muscles

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this