Structural and petrologic evolution of the Lihue basin and eastern Kauai, Hawaii

Peter W Reiners, Bruce K. Nelson, Scot K. Izuka

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

The topography of the eastern part of the Hawaiian island of Kauai is dominated by the Lihue basin, a large (∼110 km2) semicircular depression bounded by steep cliffs and partly filled by late rejuvenated-stage (or post-erosional stage) volcanic material. As with other large, semicircular basins on ocean-island volcanoes, the subsurface geology and origin (e.g., structural collapse vs. fluvial erosion) of the Lihue basin are poorly understood. New analyses of samples collected from eastern Kauai and drill holes within the basin document several important features of the late-stage geologic evolution of Kauai. First, thick (>300 m) sequences of rejuvenated-stage Koloa Volcanics in the Lihue basin show systematic, basin-wide geochemical trends of increasingly incompatible elements with time, indicating a gradual decrease in the extent of partial melting of mantle sources with time. Second, beneath the rejuvenated-stage volcanics in the basin, a thin layer of postshield alkalic stage lavas (e.g., hawaiites and mugearites) overlies older shield-stage tholeiitic lavas of the Napali Member, indicating that the Lihue basin formed by structural collapse, not fluvial erosion. Third, a large (∼2-5 km3) matrix-supported breccia, interpreted as deposits of one or more debris flows, is within the rejuvenated-stage volcanics throughout the basin, and correlates with surficial exposures of the Palikea Breccia west of the basin. Isotopic compositions of the bulk breccia are similar to those of tholeiites from the east side of Kauai, and distinct from those of west Kauai tholeiites. Clasts within the breccia are dominantly hawaiite and alkali gabbro. The source region of the breccia in the steep cliffs and highlands of the central massif to the west of the basin must contain magmatic products of an extensive postshield alkalic stage, including hawaiite flows and one or more large intrusive bodies or ponded sequences of alkali gabbro.

Original languageEnglish (US)
Pages (from-to)674-685
Number of pages12
JournalBulletin of the Geological Society of America
Volume111
Issue number5
DOIs
StatePublished - May 1999
Externally publishedYes

Fingerprint

basin
breccia
alkali gabbro
cliff
erosion
mantle source
debris flow
clast
partial melting
shield
isotopic composition
volcano
geology
topography
matrix
ocean

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)

Cite this

Structural and petrologic evolution of the Lihue basin and eastern Kauai, Hawaii. / Reiners, Peter W; Nelson, Bruce K.; Izuka, Scot K.

In: Bulletin of the Geological Society of America, Vol. 111, No. 5, 05.1999, p. 674-685.

Research output: Contribution to journalArticle

@article{9fb1ae3369d748ef864e544b8df37a34,
title = "Structural and petrologic evolution of the Lihue basin and eastern Kauai, Hawaii",
abstract = "The topography of the eastern part of the Hawaiian island of Kauai is dominated by the Lihue basin, a large (∼110 km2) semicircular depression bounded by steep cliffs and partly filled by late rejuvenated-stage (or post-erosional stage) volcanic material. As with other large, semicircular basins on ocean-island volcanoes, the subsurface geology and origin (e.g., structural collapse vs. fluvial erosion) of the Lihue basin are poorly understood. New analyses of samples collected from eastern Kauai and drill holes within the basin document several important features of the late-stage geologic evolution of Kauai. First, thick (>300 m) sequences of rejuvenated-stage Koloa Volcanics in the Lihue basin show systematic, basin-wide geochemical trends of increasingly incompatible elements with time, indicating a gradual decrease in the extent of partial melting of mantle sources with time. Second, beneath the rejuvenated-stage volcanics in the basin, a thin layer of postshield alkalic stage lavas (e.g., hawaiites and mugearites) overlies older shield-stage tholeiitic lavas of the Napali Member, indicating that the Lihue basin formed by structural collapse, not fluvial erosion. Third, a large (∼2-5 km3) matrix-supported breccia, interpreted as deposits of one or more debris flows, is within the rejuvenated-stage volcanics throughout the basin, and correlates with surficial exposures of the Palikea Breccia west of the basin. Isotopic compositions of the bulk breccia are similar to those of tholeiites from the east side of Kauai, and distinct from those of west Kauai tholeiites. Clasts within the breccia are dominantly hawaiite and alkali gabbro. The source region of the breccia in the steep cliffs and highlands of the central massif to the west of the basin must contain magmatic products of an extensive postshield alkalic stage, including hawaiite flows and one or more large intrusive bodies or ponded sequences of alkali gabbro.",
author = "Reiners, {Peter W} and Nelson, {Bruce K.} and Izuka, {Scot K.}",
year = "1999",
month = "5",
doi = "10.1130/0016-7606(1999)111<0674:SAPEOT>2.3.CO;2",
language = "English (US)",
volume = "111",
pages = "674--685",
journal = "Geological Society of America Bulletin",
issn = "0016-7606",
publisher = "Geological Society of America",
number = "5",

}

TY - JOUR

T1 - Structural and petrologic evolution of the Lihue basin and eastern Kauai, Hawaii

AU - Reiners, Peter W

AU - Nelson, Bruce K.

AU - Izuka, Scot K.

PY - 1999/5

Y1 - 1999/5

N2 - The topography of the eastern part of the Hawaiian island of Kauai is dominated by the Lihue basin, a large (∼110 km2) semicircular depression bounded by steep cliffs and partly filled by late rejuvenated-stage (or post-erosional stage) volcanic material. As with other large, semicircular basins on ocean-island volcanoes, the subsurface geology and origin (e.g., structural collapse vs. fluvial erosion) of the Lihue basin are poorly understood. New analyses of samples collected from eastern Kauai and drill holes within the basin document several important features of the late-stage geologic evolution of Kauai. First, thick (>300 m) sequences of rejuvenated-stage Koloa Volcanics in the Lihue basin show systematic, basin-wide geochemical trends of increasingly incompatible elements with time, indicating a gradual decrease in the extent of partial melting of mantle sources with time. Second, beneath the rejuvenated-stage volcanics in the basin, a thin layer of postshield alkalic stage lavas (e.g., hawaiites and mugearites) overlies older shield-stage tholeiitic lavas of the Napali Member, indicating that the Lihue basin formed by structural collapse, not fluvial erosion. Third, a large (∼2-5 km3) matrix-supported breccia, interpreted as deposits of one or more debris flows, is within the rejuvenated-stage volcanics throughout the basin, and correlates with surficial exposures of the Palikea Breccia west of the basin. Isotopic compositions of the bulk breccia are similar to those of tholeiites from the east side of Kauai, and distinct from those of west Kauai tholeiites. Clasts within the breccia are dominantly hawaiite and alkali gabbro. The source region of the breccia in the steep cliffs and highlands of the central massif to the west of the basin must contain magmatic products of an extensive postshield alkalic stage, including hawaiite flows and one or more large intrusive bodies or ponded sequences of alkali gabbro.

AB - The topography of the eastern part of the Hawaiian island of Kauai is dominated by the Lihue basin, a large (∼110 km2) semicircular depression bounded by steep cliffs and partly filled by late rejuvenated-stage (or post-erosional stage) volcanic material. As with other large, semicircular basins on ocean-island volcanoes, the subsurface geology and origin (e.g., structural collapse vs. fluvial erosion) of the Lihue basin are poorly understood. New analyses of samples collected from eastern Kauai and drill holes within the basin document several important features of the late-stage geologic evolution of Kauai. First, thick (>300 m) sequences of rejuvenated-stage Koloa Volcanics in the Lihue basin show systematic, basin-wide geochemical trends of increasingly incompatible elements with time, indicating a gradual decrease in the extent of partial melting of mantle sources with time. Second, beneath the rejuvenated-stage volcanics in the basin, a thin layer of postshield alkalic stage lavas (e.g., hawaiites and mugearites) overlies older shield-stage tholeiitic lavas of the Napali Member, indicating that the Lihue basin formed by structural collapse, not fluvial erosion. Third, a large (∼2-5 km3) matrix-supported breccia, interpreted as deposits of one or more debris flows, is within the rejuvenated-stage volcanics throughout the basin, and correlates with surficial exposures of the Palikea Breccia west of the basin. Isotopic compositions of the bulk breccia are similar to those of tholeiites from the east side of Kauai, and distinct from those of west Kauai tholeiites. Clasts within the breccia are dominantly hawaiite and alkali gabbro. The source region of the breccia in the steep cliffs and highlands of the central massif to the west of the basin must contain magmatic products of an extensive postshield alkalic stage, including hawaiite flows and one or more large intrusive bodies or ponded sequences of alkali gabbro.

UR - http://www.scopus.com/inward/record.url?scp=0032848391&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032848391&partnerID=8YFLogxK

U2 - 10.1130/0016-7606(1999)111<0674:SAPEOT>2.3.CO;2

DO - 10.1130/0016-7606(1999)111<0674:SAPEOT>2.3.CO;2

M3 - Article

AN - SCOPUS:0032848391

VL - 111

SP - 674

EP - 685

JO - Geological Society of America Bulletin

JF - Geological Society of America Bulletin

SN - 0016-7606

IS - 5

ER -