Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements

Michael F Brown, Joachim Seelig, Ulrich Häberlen

Research output: Contribution to journalArticle

165 Citations (Scopus)

Abstract

The quadrupolar spin-lattice (T1) relaxation of deuterium labeled phospholipid bilayers has been investigated at a resonance frequency of 54.4 MHz. T1 measurements are reported for multilamellar dispersions, single bilayer vesicles, and chloroform/methanol solutions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), selectively deuterated at ten different positions in each of the fatty acyl chains and at the sn-3 carbon of the glycerol backbone. At all segment positions investigated, the T 1 relaxation times of the multilamellar and vesicle samples of DPPC were found to be similar. The profiles of the spin-lattice relaxation rate (1/T1) as a function of the deuterated chain segment position resemble the previously determined order profiles [A. Seelig and J. Seelig, Biochem. 13, 4839 (1974)]. In particular, the relaxation rates are approximately constant over the first part of the fatty acyl chains (carbon segments C3-C9), then decreasing in the central region of the bilayer. In chloroform/methanol solution, by contrast, the relaxation rates decrease continuously from the glycerol backbone region to the chain terminal methyl groups. The contributions from molecular order and motion to the T1 relaxation rates have been evaluated and correlation time profiles derived as a function of chain position. The results suggest that the motions of the various methylene segments are correlated in the first part of the fatty acyl chains (C3-C9), occurring at frequencies up to 1/τc∼1010Hz. Beyond C9, the rate and amplitude of the chain segmental motions increase, approaching that of simple paraffinic liquids in the central region of the bilayer (1/τc≃1011Hz). The T1 relaxation rates of multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) deuterated at the 9, 10 double bond of the sn-2 chain were also determined and found to be significantly faster than those of the CD2 chain segments of DPPC bilayers. This is most likely due to the larger size and correspondingly slower motion of the chain segment containing the double bond. At segments close to the lipid-water interface the rate of motion is considerably less than in the hydrocarbon region of the bilayer.

Original languageEnglish (US)
Pages (from-to)5045-5053
Number of pages9
JournalThe Journal of Chemical Physics
Volume70
Issue number11
StatePublished - 1979
Externally publishedYes

Fingerprint

Phosphorylcholine
Spin-lattice relaxation
dynamic structural analysis
Deuterium
Structural dynamics
Chloroform
Time measurement
Dispersions
spin-lattice relaxation
Relaxation time
Glycerol
Methanol
deuterium
Phospholipids
Carbon
relaxation time
time measurement
Hydrocarbons
Lipids
glycerols

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements. / Brown, Michael F; Seelig, Joachim; Häberlen, Ulrich.

In: The Journal of Chemical Physics, Vol. 70, No. 11, 1979, p. 5045-5053.

Research output: Contribution to journalArticle

@article{434b489dbe014ccf9c488fd94982428b,
title = "Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements",
abstract = "The quadrupolar spin-lattice (T1) relaxation of deuterium labeled phospholipid bilayers has been investigated at a resonance frequency of 54.4 MHz. T1 measurements are reported for multilamellar dispersions, single bilayer vesicles, and chloroform/methanol solutions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), selectively deuterated at ten different positions in each of the fatty acyl chains and at the sn-3 carbon of the glycerol backbone. At all segment positions investigated, the T 1 relaxation times of the multilamellar and vesicle samples of DPPC were found to be similar. The profiles of the spin-lattice relaxation rate (1/T1) as a function of the deuterated chain segment position resemble the previously determined order profiles [A. Seelig and J. Seelig, Biochem. 13, 4839 (1974)]. In particular, the relaxation rates are approximately constant over the first part of the fatty acyl chains (carbon segments C3-C9), then decreasing in the central region of the bilayer. In chloroform/methanol solution, by contrast, the relaxation rates decrease continuously from the glycerol backbone region to the chain terminal methyl groups. The contributions from molecular order and motion to the T1 relaxation rates have been evaluated and correlation time profiles derived as a function of chain position. The results suggest that the motions of the various methylene segments are correlated in the first part of the fatty acyl chains (C3-C9), occurring at frequencies up to 1/τc∼1010Hz. Beyond C9, the rate and amplitude of the chain segmental motions increase, approaching that of simple paraffinic liquids in the central region of the bilayer (1/τc≃1011Hz). The T1 relaxation rates of multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) deuterated at the 9, 10 double bond of the sn-2 chain were also determined and found to be significantly faster than those of the CD2 chain segments of DPPC bilayers. This is most likely due to the larger size and correspondingly slower motion of the chain segment containing the double bond. At segments close to the lipid-water interface the rate of motion is considerably less than in the hydrocarbon region of the bilayer.",
author = "Brown, {Michael F} and Joachim Seelig and Ulrich H{\"a}berlen",
year = "1979",
language = "English (US)",
volume = "70",
pages = "5045--5053",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "11",

}

TY - JOUR

T1 - Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements

AU - Brown, Michael F

AU - Seelig, Joachim

AU - Häberlen, Ulrich

PY - 1979

Y1 - 1979

N2 - The quadrupolar spin-lattice (T1) relaxation of deuterium labeled phospholipid bilayers has been investigated at a resonance frequency of 54.4 MHz. T1 measurements are reported for multilamellar dispersions, single bilayer vesicles, and chloroform/methanol solutions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), selectively deuterated at ten different positions in each of the fatty acyl chains and at the sn-3 carbon of the glycerol backbone. At all segment positions investigated, the T 1 relaxation times of the multilamellar and vesicle samples of DPPC were found to be similar. The profiles of the spin-lattice relaxation rate (1/T1) as a function of the deuterated chain segment position resemble the previously determined order profiles [A. Seelig and J. Seelig, Biochem. 13, 4839 (1974)]. In particular, the relaxation rates are approximately constant over the first part of the fatty acyl chains (carbon segments C3-C9), then decreasing in the central region of the bilayer. In chloroform/methanol solution, by contrast, the relaxation rates decrease continuously from the glycerol backbone region to the chain terminal methyl groups. The contributions from molecular order and motion to the T1 relaxation rates have been evaluated and correlation time profiles derived as a function of chain position. The results suggest that the motions of the various methylene segments are correlated in the first part of the fatty acyl chains (C3-C9), occurring at frequencies up to 1/τc∼1010Hz. Beyond C9, the rate and amplitude of the chain segmental motions increase, approaching that of simple paraffinic liquids in the central region of the bilayer (1/τc≃1011Hz). The T1 relaxation rates of multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) deuterated at the 9, 10 double bond of the sn-2 chain were also determined and found to be significantly faster than those of the CD2 chain segments of DPPC bilayers. This is most likely due to the larger size and correspondingly slower motion of the chain segment containing the double bond. At segments close to the lipid-water interface the rate of motion is considerably less than in the hydrocarbon region of the bilayer.

AB - The quadrupolar spin-lattice (T1) relaxation of deuterium labeled phospholipid bilayers has been investigated at a resonance frequency of 54.4 MHz. T1 measurements are reported for multilamellar dispersions, single bilayer vesicles, and chloroform/methanol solutions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), selectively deuterated at ten different positions in each of the fatty acyl chains and at the sn-3 carbon of the glycerol backbone. At all segment positions investigated, the T 1 relaxation times of the multilamellar and vesicle samples of DPPC were found to be similar. The profiles of the spin-lattice relaxation rate (1/T1) as a function of the deuterated chain segment position resemble the previously determined order profiles [A. Seelig and J. Seelig, Biochem. 13, 4839 (1974)]. In particular, the relaxation rates are approximately constant over the first part of the fatty acyl chains (carbon segments C3-C9), then decreasing in the central region of the bilayer. In chloroform/methanol solution, by contrast, the relaxation rates decrease continuously from the glycerol backbone region to the chain terminal methyl groups. The contributions from molecular order and motion to the T1 relaxation rates have been evaluated and correlation time profiles derived as a function of chain position. The results suggest that the motions of the various methylene segments are correlated in the first part of the fatty acyl chains (C3-C9), occurring at frequencies up to 1/τc∼1010Hz. Beyond C9, the rate and amplitude of the chain segmental motions increase, approaching that of simple paraffinic liquids in the central region of the bilayer (1/τc≃1011Hz). The T1 relaxation rates of multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) deuterated at the 9, 10 double bond of the sn-2 chain were also determined and found to be significantly faster than those of the CD2 chain segments of DPPC bilayers. This is most likely due to the larger size and correspondingly slower motion of the chain segment containing the double bond. At segments close to the lipid-water interface the rate of motion is considerably less than in the hydrocarbon region of the bilayer.

UR - http://www.scopus.com/inward/record.url?scp=0001231454&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001231454&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0001231454

VL - 70

SP - 5045

EP - 5053

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 11

ER -