Study of the flow mixing in a novel open-channel raceway for algae production

Research output: Contribution to conferencePaper

3 Scopus citations

Abstract

Making fuel from algae is one of the promising approaches of producing biofuels. Open channel raceway is a typical facility of growing algae in medium and large scales. The algae growth rate in water raceway is affected by conditions of water temperature, nutrients, and sunlight. These conditions are essentially associated with the fluid mixing in the flow field. A good mixing of fluid allows better diffusion of nutrients and equal opportunities of exposure to the water surface and therefore sunlight, as well as a uniform temperature everywhere in water raceway so that all algae cells grow in the same rate. While a better fluid mixing is benefit to the growth of algae, it is also desirable that the energy needed to drive the flow and mixing being the minimum. In this work, a novel flow field has been proposed and the flow field was studied through flow visualization and CFD analysis. Optimization of the flow field for better flow mixing and low energy cost for the flow has been considered.

Original languageEnglish (US)
Pages769-775
Number of pages7
DOIs
StatePublished - Jan 1 2012
EventASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology - San Diego, CA, United States
Duration: Jul 23 2012Jul 26 2012

Other

OtherASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
CountryUnited States
CitySan Diego, CA
Period7/23/127/26/12

    Fingerprint

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment

Cite this

Xu, B., Li, P., & Waller, P. (2012). Study of the flow mixing in a novel open-channel raceway for algae production. 769-775. Paper presented at ASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, San Diego, CA, United States. https://doi.org/10.1115/ES2012-91096