Subcellular localization of the intracellular survival-enhancing eis protein of Mycobacterium tuberculosis

J. L. Dahl, J. Wei, J. W. Moulder, S. Laal, Richard L Friedman

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. It is not clear how M. tuberculosis avoids the destructive action of macrophages, but this ability is fundamental in the pathogenicity of tuberculosis. A gene previously identified in M. tuberculosis, designated eis, was found to enhance intracellular survival of Mycobacterium smegmatis in the human macrophage-like cell line U-937 (J. Wei et al., J. Bacteriol. 182:377-384, 2000). When eis was introduced into M. smegmatis on a multicopy vector, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the appearance of a unique 42-kDa protein band corresponding to the predicted molecular weight of the eis gene product. This band was electroeluted from the gel with a purity of >90% and subjected to N-terminal amino acid sequencing, which demonstrated that the 42-kDa band was indeed the protein product of eis. The Eis protein produced by M. tuberculosis H37Ra had an identical N-terminal amino acid sequence. A synthetic polypeptide corresponding to a carboxyl-terminal region of the deduced eis protein sequence was used to generate affinity-purified rabbit polyclonal antibodies that reacted with the 42-kDa protein in Western blot analysis. Hydropathy profile analysis showed the Eis protein to be predominantly hydrophilic with a potential hydrophobic amino terminus. Phase separation of M. tuberculosis H37Ra lysates by the nonionic detergent Triton X-114 revealed the Eis protein in both the aqueous and detergent phases. After fractionation of M. tuberculosis by differential centrifugation, Eis protein appeared mainly in the cytoplasmic fraction but also in the membrane, cell wall, and culture supernatant fractions as well. Forty percent of the sera from pulmonary tuberculosis patients tested for anti-Eis antibody gave positive reactions in Western blot analysis. Although the function of Eis remains unknown, evidence presented here suggests it associates with the cell surface and is released into the culture medium. It is produced during human tuberculosis infection and therefore may be an important M. tuberculosis immunogen.

Original languageEnglish (US)
Pages (from-to)4295-4302
Number of pages8
JournalInfection and Immunity
Volume69
Issue number7
DOIs
StatePublished - 2001

Fingerprint

Mycobacterium tuberculosis
Survival
Proteins
Mycobacterium smegmatis
Macrophages
Detergents
Tuberculosis
Western Blotting
Protein Sequence Analysis
Mycobacterium tuberculosis Eis protein
Centrifugation
Pulmonary Tuberculosis
Sodium Dodecyl Sulfate
Cell Wall
Genes
Virulence
Culture Media
Polyacrylamide Gel Electrophoresis
Anti-Idiotypic Antibodies
Amino Acid Sequence

ASJC Scopus subject areas

  • Immunology

Cite this

Subcellular localization of the intracellular survival-enhancing eis protein of Mycobacterium tuberculosis. / Dahl, J. L.; Wei, J.; Moulder, J. W.; Laal, S.; Friedman, Richard L.

In: Infection and Immunity, Vol. 69, No. 7, 2001, p. 4295-4302.

Research output: Contribution to journalArticle

@article{e38e564156f748f8913ebd0f44babbc8,
title = "Subcellular localization of the intracellular survival-enhancing eis protein of Mycobacterium tuberculosis",
abstract = "Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. It is not clear how M. tuberculosis avoids the destructive action of macrophages, but this ability is fundamental in the pathogenicity of tuberculosis. A gene previously identified in M. tuberculosis, designated eis, was found to enhance intracellular survival of Mycobacterium smegmatis in the human macrophage-like cell line U-937 (J. Wei et al., J. Bacteriol. 182:377-384, 2000). When eis was introduced into M. smegmatis on a multicopy vector, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the appearance of a unique 42-kDa protein band corresponding to the predicted molecular weight of the eis gene product. This band was electroeluted from the gel with a purity of >90{\%} and subjected to N-terminal amino acid sequencing, which demonstrated that the 42-kDa band was indeed the protein product of eis. The Eis protein produced by M. tuberculosis H37Ra had an identical N-terminal amino acid sequence. A synthetic polypeptide corresponding to a carboxyl-terminal region of the deduced eis protein sequence was used to generate affinity-purified rabbit polyclonal antibodies that reacted with the 42-kDa protein in Western blot analysis. Hydropathy profile analysis showed the Eis protein to be predominantly hydrophilic with a potential hydrophobic amino terminus. Phase separation of M. tuberculosis H37Ra lysates by the nonionic detergent Triton X-114 revealed the Eis protein in both the aqueous and detergent phases. After fractionation of M. tuberculosis by differential centrifugation, Eis protein appeared mainly in the cytoplasmic fraction but also in the membrane, cell wall, and culture supernatant fractions as well. Forty percent of the sera from pulmonary tuberculosis patients tested for anti-Eis antibody gave positive reactions in Western blot analysis. Although the function of Eis remains unknown, evidence presented here suggests it associates with the cell surface and is released into the culture medium. It is produced during human tuberculosis infection and therefore may be an important M. tuberculosis immunogen.",
author = "Dahl, {J. L.} and J. Wei and Moulder, {J. W.} and S. Laal and Friedman, {Richard L}",
year = "2001",
doi = "10.1128/IAI.69.7.4295-4302.2001",
language = "English (US)",
volume = "69",
pages = "4295--4302",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "7",

}

TY - JOUR

T1 - Subcellular localization of the intracellular survival-enhancing eis protein of Mycobacterium tuberculosis

AU - Dahl, J. L.

AU - Wei, J.

AU - Moulder, J. W.

AU - Laal, S.

AU - Friedman, Richard L

PY - 2001

Y1 - 2001

N2 - Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. It is not clear how M. tuberculosis avoids the destructive action of macrophages, but this ability is fundamental in the pathogenicity of tuberculosis. A gene previously identified in M. tuberculosis, designated eis, was found to enhance intracellular survival of Mycobacterium smegmatis in the human macrophage-like cell line U-937 (J. Wei et al., J. Bacteriol. 182:377-384, 2000). When eis was introduced into M. smegmatis on a multicopy vector, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the appearance of a unique 42-kDa protein band corresponding to the predicted molecular weight of the eis gene product. This band was electroeluted from the gel with a purity of >90% and subjected to N-terminal amino acid sequencing, which demonstrated that the 42-kDa band was indeed the protein product of eis. The Eis protein produced by M. tuberculosis H37Ra had an identical N-terminal amino acid sequence. A synthetic polypeptide corresponding to a carboxyl-terminal region of the deduced eis protein sequence was used to generate affinity-purified rabbit polyclonal antibodies that reacted with the 42-kDa protein in Western blot analysis. Hydropathy profile analysis showed the Eis protein to be predominantly hydrophilic with a potential hydrophobic amino terminus. Phase separation of M. tuberculosis H37Ra lysates by the nonionic detergent Triton X-114 revealed the Eis protein in both the aqueous and detergent phases. After fractionation of M. tuberculosis by differential centrifugation, Eis protein appeared mainly in the cytoplasmic fraction but also in the membrane, cell wall, and culture supernatant fractions as well. Forty percent of the sera from pulmonary tuberculosis patients tested for anti-Eis antibody gave positive reactions in Western blot analysis. Although the function of Eis remains unknown, evidence presented here suggests it associates with the cell surface and is released into the culture medium. It is produced during human tuberculosis infection and therefore may be an important M. tuberculosis immunogen.

AB - Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. It is not clear how M. tuberculosis avoids the destructive action of macrophages, but this ability is fundamental in the pathogenicity of tuberculosis. A gene previously identified in M. tuberculosis, designated eis, was found to enhance intracellular survival of Mycobacterium smegmatis in the human macrophage-like cell line U-937 (J. Wei et al., J. Bacteriol. 182:377-384, 2000). When eis was introduced into M. smegmatis on a multicopy vector, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the appearance of a unique 42-kDa protein band corresponding to the predicted molecular weight of the eis gene product. This band was electroeluted from the gel with a purity of >90% and subjected to N-terminal amino acid sequencing, which demonstrated that the 42-kDa band was indeed the protein product of eis. The Eis protein produced by M. tuberculosis H37Ra had an identical N-terminal amino acid sequence. A synthetic polypeptide corresponding to a carboxyl-terminal region of the deduced eis protein sequence was used to generate affinity-purified rabbit polyclonal antibodies that reacted with the 42-kDa protein in Western blot analysis. Hydropathy profile analysis showed the Eis protein to be predominantly hydrophilic with a potential hydrophobic amino terminus. Phase separation of M. tuberculosis H37Ra lysates by the nonionic detergent Triton X-114 revealed the Eis protein in both the aqueous and detergent phases. After fractionation of M. tuberculosis by differential centrifugation, Eis protein appeared mainly in the cytoplasmic fraction but also in the membrane, cell wall, and culture supernatant fractions as well. Forty percent of the sera from pulmonary tuberculosis patients tested for anti-Eis antibody gave positive reactions in Western blot analysis. Although the function of Eis remains unknown, evidence presented here suggests it associates with the cell surface and is released into the culture medium. It is produced during human tuberculosis infection and therefore may be an important M. tuberculosis immunogen.

UR - http://www.scopus.com/inward/record.url?scp=0034743604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034743604&partnerID=8YFLogxK

U2 - 10.1128/IAI.69.7.4295-4302.2001

DO - 10.1128/IAI.69.7.4295-4302.2001

M3 - Article

C2 - 11401966

AN - SCOPUS:0034743604

VL - 69

SP - 4295

EP - 4302

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 7

ER -