Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: An example from California

Mihai N Ducea, Jason Saleeby, Jean Morrison, Victor A. Valencia

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

We investigated calcite globules and veins in two spinel-garnet peridotite xenoliths from the sub-Sierra Nevada mantle. The studied xenoliths were entrained in a Miocene (11 Ma) volcanic plug. These carbonates are associated spatially with silicate glass inclusions, suggesting that they are primary inclusions - inclusions that formed at high temperature in the mantle and not at or close to the Earth's surface. The host peridotites represent samples of the lithospheric mantle wedge beneath the Mesozoic California magmatic arc, as indicated by radiogenic isotopic ratios measured on clinopyroxene separates [87Sr/86Sr(11 Ma) = 0.7058-0.7061, ε Nd (11 Ma) = -1.9 to -0.7]. Mineral chemistry of the peridotite major phases is typical of a mantle section that was depleted of melt. The δ18O values of olivine and orthopyroxene from the two samples are also typical of mantle rocks (δ 18O = 6-6.5‰). In contrast, calcite veins have δ18O of 18-20‰ and δ13C of -14‰, arguing for a subducted sedimentary origin for these carbonates. Presumably, the carbonates were expelled from the downgoing slab and fluxed into the overlying mantle wedge as CO2- or CO2-H2O-rich fluids or melts. The trace-element patterns of two analyzed calcite veins are typical of the arc signatures (e.g., depletions in high-field-strength elements) seen in calc-alkaline magmatic rocks worldwide. However, the cores of peridotite clinopyroxenes do not show that pattern, suggesting that the arc-like trace element signature was introduced via the recycled carbonate agent. A connection between mantle wedge carbonation and diamond formation in a subduction environment is proposed based on these observations.

Original languageEnglish (US)
Pages (from-to)864-870
Number of pages7
JournalAmerican Mineralogist
Volume90
Issue number5-6
DOIs
StatePublished - May 2005

Fingerprint

Diamond
Carbonates
metasomatism
diamond
wedges
Calcium Carbonate
carbonates
Earth mantle
diamonds
mantle
carbonate
Trace Elements
peridotite
calcite
veins
Rocks
arcs
Silicates
inclusions
Carbonation

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation : An example from California. / Ducea, Mihai N; Saleeby, Jason; Morrison, Jean; Valencia, Victor A.

In: American Mineralogist, Vol. 90, No. 5-6, 05.2005, p. 864-870.

Research output: Contribution to journalArticle

@article{9eacecffe8c74e968630d1c746e4da66,
title = "Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation: An example from California",
abstract = "We investigated calcite globules and veins in two spinel-garnet peridotite xenoliths from the sub-Sierra Nevada mantle. The studied xenoliths were entrained in a Miocene (11 Ma) volcanic plug. These carbonates are associated spatially with silicate glass inclusions, suggesting that they are primary inclusions - inclusions that formed at high temperature in the mantle and not at or close to the Earth's surface. The host peridotites represent samples of the lithospheric mantle wedge beneath the Mesozoic California magmatic arc, as indicated by radiogenic isotopic ratios measured on clinopyroxene separates [87Sr/86Sr(11 Ma) = 0.7058-0.7061, ε Nd (11 Ma) = -1.9 to -0.7]. Mineral chemistry of the peridotite major phases is typical of a mantle section that was depleted of melt. The δ18O values of olivine and orthopyroxene from the two samples are also typical of mantle rocks (δ 18O = 6-6.5‰). In contrast, calcite veins have δ18O of 18-20‰ and δ13C of -14‰, arguing for a subducted sedimentary origin for these carbonates. Presumably, the carbonates were expelled from the downgoing slab and fluxed into the overlying mantle wedge as CO2- or CO2-H2O-rich fluids or melts. The trace-element patterns of two analyzed calcite veins are typical of the arc signatures (e.g., depletions in high-field-strength elements) seen in calc-alkaline magmatic rocks worldwide. However, the cores of peridotite clinopyroxenes do not show that pattern, suggesting that the arc-like trace element signature was introduced via the recycled carbonate agent. A connection between mantle wedge carbonation and diamond formation in a subduction environment is proposed based on these observations.",
author = "Ducea, {Mihai N} and Jason Saleeby and Jean Morrison and Valencia, {Victor A.}",
year = "2005",
month = "5",
doi = "10.2138/am.2005.1670",
language = "English (US)",
volume = "90",
pages = "864--870",
journal = "American Mineralogist",
issn = "0003-004X",
publisher = "Mineralogical Society of America",
number = "5-6",

}

TY - JOUR

T1 - Subducted carbonates, metasomatism of mantle wedges, and possible connections to diamond formation

T2 - An example from California

AU - Ducea, Mihai N

AU - Saleeby, Jason

AU - Morrison, Jean

AU - Valencia, Victor A.

PY - 2005/5

Y1 - 2005/5

N2 - We investigated calcite globules and veins in two spinel-garnet peridotite xenoliths from the sub-Sierra Nevada mantle. The studied xenoliths were entrained in a Miocene (11 Ma) volcanic plug. These carbonates are associated spatially with silicate glass inclusions, suggesting that they are primary inclusions - inclusions that formed at high temperature in the mantle and not at or close to the Earth's surface. The host peridotites represent samples of the lithospheric mantle wedge beneath the Mesozoic California magmatic arc, as indicated by radiogenic isotopic ratios measured on clinopyroxene separates [87Sr/86Sr(11 Ma) = 0.7058-0.7061, ε Nd (11 Ma) = -1.9 to -0.7]. Mineral chemistry of the peridotite major phases is typical of a mantle section that was depleted of melt. The δ18O values of olivine and orthopyroxene from the two samples are also typical of mantle rocks (δ 18O = 6-6.5‰). In contrast, calcite veins have δ18O of 18-20‰ and δ13C of -14‰, arguing for a subducted sedimentary origin for these carbonates. Presumably, the carbonates were expelled from the downgoing slab and fluxed into the overlying mantle wedge as CO2- or CO2-H2O-rich fluids or melts. The trace-element patterns of two analyzed calcite veins are typical of the arc signatures (e.g., depletions in high-field-strength elements) seen in calc-alkaline magmatic rocks worldwide. However, the cores of peridotite clinopyroxenes do not show that pattern, suggesting that the arc-like trace element signature was introduced via the recycled carbonate agent. A connection between mantle wedge carbonation and diamond formation in a subduction environment is proposed based on these observations.

AB - We investigated calcite globules and veins in two spinel-garnet peridotite xenoliths from the sub-Sierra Nevada mantle. The studied xenoliths were entrained in a Miocene (11 Ma) volcanic plug. These carbonates are associated spatially with silicate glass inclusions, suggesting that they are primary inclusions - inclusions that formed at high temperature in the mantle and not at or close to the Earth's surface. The host peridotites represent samples of the lithospheric mantle wedge beneath the Mesozoic California magmatic arc, as indicated by radiogenic isotopic ratios measured on clinopyroxene separates [87Sr/86Sr(11 Ma) = 0.7058-0.7061, ε Nd (11 Ma) = -1.9 to -0.7]. Mineral chemistry of the peridotite major phases is typical of a mantle section that was depleted of melt. The δ18O values of olivine and orthopyroxene from the two samples are also typical of mantle rocks (δ 18O = 6-6.5‰). In contrast, calcite veins have δ18O of 18-20‰ and δ13C of -14‰, arguing for a subducted sedimentary origin for these carbonates. Presumably, the carbonates were expelled from the downgoing slab and fluxed into the overlying mantle wedge as CO2- or CO2-H2O-rich fluids or melts. The trace-element patterns of two analyzed calcite veins are typical of the arc signatures (e.g., depletions in high-field-strength elements) seen in calc-alkaline magmatic rocks worldwide. However, the cores of peridotite clinopyroxenes do not show that pattern, suggesting that the arc-like trace element signature was introduced via the recycled carbonate agent. A connection between mantle wedge carbonation and diamond formation in a subduction environment is proposed based on these observations.

UR - http://www.scopus.com/inward/record.url?scp=20444496802&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=20444496802&partnerID=8YFLogxK

U2 - 10.2138/am.2005.1670

DO - 10.2138/am.2005.1670

M3 - Article

AN - SCOPUS:20444496802

VL - 90

SP - 864

EP - 870

JO - American Mineralogist

JF - American Mineralogist

SN - 0003-004X

IS - 5-6

ER -