Substrate-dependent inhibition of human mate1 by cationic ionic liquids

Lucy J. Martínez-Guerrero, Stephen Wright

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: Nbutylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2, 5]oxadiazol-4-yl)amino] ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2-4 mM) than for either the pyrrolidinium- (BmPy; 20-70 μM) or imidazolium-based ILs (Bmim; 15-60 μM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 μM against MPP and 30 μM against NBD-MTMA versus 60 μM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites.

Original languageEnglish (US)
Pages (from-to)495-503
Number of pages9
JournalJournal of Pharmacology and Experimental Therapeutics
Volume346
Issue number3
DOIs
StatePublished - Sep 2013

Fingerprint

1-Methyl-4-phenylpyridinium
Ionic Liquids
Ligands
Kidney
Interleukin-15
Proximal Kidney Tubule
Cricetulus
Inhibitory Concentration 50
Cations
Ovary
Salts
Binding Sites
Membranes
triethylmethylammonium
N,N,N-trimethyl-2-(methyl(7-nitrobenzo(c)(l,2,5)oxadiazol-4-yl)amino)ethanaminium

ASJC Scopus subject areas

  • Pharmacology
  • Molecular Medicine

Cite this

Substrate-dependent inhibition of human mate1 by cationic ionic liquids. / Martínez-Guerrero, Lucy J.; Wright, Stephen.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 346, No. 3, 09.2013, p. 495-503.

Research output: Contribution to journalArticle

@article{3ed94e5adc8b4addb77d3add8bff3f3e,
title = "Substrate-dependent inhibition of human mate1 by cationic ionic liquids",
abstract = "The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: Nbutylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2, 5]oxadiazol-4-yl)amino] ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2-4 mM) than for either the pyrrolidinium- (BmPy; 20-70 μM) or imidazolium-based ILs (Bmim; 15-60 μM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 μM against MPP and 30 μM against NBD-MTMA versus 60 μM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites.",
author = "Mart{\'i}nez-Guerrero, {Lucy J.} and Stephen Wright",
year = "2013",
month = "9",
doi = "10.1124/jpet.113.204206",
language = "English (US)",
volume = "346",
pages = "495--503",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "3",

}

TY - JOUR

T1 - Substrate-dependent inhibition of human mate1 by cationic ionic liquids

AU - Martínez-Guerrero, Lucy J.

AU - Wright, Stephen

PY - 2013/9

Y1 - 2013/9

N2 - The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: Nbutylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2, 5]oxadiazol-4-yl)amino] ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2-4 mM) than for either the pyrrolidinium- (BmPy; 20-70 μM) or imidazolium-based ILs (Bmim; 15-60 μM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 μM against MPP and 30 μM against NBD-MTMA versus 60 μM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites.

AB - The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: Nbutylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2, 5]oxadiazol-4-yl)amino] ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2-4 mM) than for either the pyrrolidinium- (BmPy; 20-70 μM) or imidazolium-based ILs (Bmim; 15-60 μM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 μM against MPP and 30 μM against NBD-MTMA versus 60 μM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites.

UR - http://www.scopus.com/inward/record.url?scp=84882419834&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84882419834&partnerID=8YFLogxK

U2 - 10.1124/jpet.113.204206

DO - 10.1124/jpet.113.204206

M3 - Article

VL - 346

SP - 495

EP - 503

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 3

ER -