Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star

Peter E. Nugent, Mark Sullivan, S. Bradley Cenko, Rollin C. Thomas, Daniel Kasen, D. Andrew Howell, David Bersier, Joshua S. Bloom, S. R. Kulkarni, Michael T. Kandrashoff, Alexei V. Filippenko, Jeffrey M. Silverman, Geoffrey W. Marcy, Andrew W. Howard, Howard T. Isaacson, Kate Maguire, Nao Suzuki, James E. Tarlton, Yen Chen Pan, Lars BildstenBenjamin J. Fulton, Jerod T. Parrent, David Sand, Philipp Podsiadlowski, Federica B. Bianco, Benjamin Dilday, Melissa L. Graham, Joe Lyman, Phil James, Mansi M. Kasliwal, Nicholas M. Law, Robert M. Quimby, Isobel M. Hook, Emma S. Walker, Paolo Mazzali, Elena Pian, Eran O. Ofek, Avishay Gal-Yam, Dovi Poznanski

Research output: Contribution to journalArticlepeer-review

363 Scopus citations

Abstract

Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

Original languageEnglish (US)
Pages (from-to)344-347
Number of pages4
JournalNature
Volume480
Issue number7377
DOIs
StatePublished - Dec 15 2011
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star'. Together they form a unique fingerprint.

Cite this