### Abstract

One of the goals of the landscape program in string theory is to extract information about the space of string vacua in the form of statistical correlations between phenomenological features that are otherwise uncorrelated in field theory. Such correlations would thus represent predictions of string theory that hold independently of a vacuum-selection principle. In this paper, we study statistical correlations between two features which are likely to be central to any potential description of nature at high-energy scales: gauge symmetries and spacetime supersymmetry. We analyze correlations between these two kinds of symmetry within the context of perturbative heterotic string vacua, and find a number of striking features. We find, for example, that the degree of spacetime supersymmetry is strongly correlated with the probabilities of realizing certain gauge groups, with unbroken supersymmetry at the string scale tending to favor gauge-group factors with larger rank. We also find that nearly half of the heterotic landscape is nonsupersymmetric and yet tachyon-free at tree level; indeed, less than a quarter of the tree-level heterotic landscape exhibits any supersymmetry at all at the string scale.

Original language | English (US) |
---|---|

Article number | 126005 |

Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |

Volume | 75 |

Issue number | 12 |

DOIs | |

State | Published - Jun 27 2007 |

### Fingerprint

### ASJC Scopus subject areas

- Physics and Astronomy(all)
- Nuclear and High Energy Physics
- Mathematical Physics

### Cite this

*Physical Review D - Particles, Fields, Gravitation and Cosmology*,

*75*(12), [126005]. https://doi.org/10.1103/PhysRevD.75.126005

**Supersymmetry versus gauge symmetry on the heterotic landscape.** / Dienes, Keith R; Lennek, Michael; Sénéchal, David; Wasnik, Vaibhav.

Research output: Contribution to journal › Article

*Physical Review D - Particles, Fields, Gravitation and Cosmology*, vol. 75, no. 12, 126005. https://doi.org/10.1103/PhysRevD.75.126005

}

TY - JOUR

T1 - Supersymmetry versus gauge symmetry on the heterotic landscape

AU - Dienes, Keith R

AU - Lennek, Michael

AU - Sénéchal, David

AU - Wasnik, Vaibhav

PY - 2007/6/27

Y1 - 2007/6/27

N2 - One of the goals of the landscape program in string theory is to extract information about the space of string vacua in the form of statistical correlations between phenomenological features that are otherwise uncorrelated in field theory. Such correlations would thus represent predictions of string theory that hold independently of a vacuum-selection principle. In this paper, we study statistical correlations between two features which are likely to be central to any potential description of nature at high-energy scales: gauge symmetries and spacetime supersymmetry. We analyze correlations between these two kinds of symmetry within the context of perturbative heterotic string vacua, and find a number of striking features. We find, for example, that the degree of spacetime supersymmetry is strongly correlated with the probabilities of realizing certain gauge groups, with unbroken supersymmetry at the string scale tending to favor gauge-group factors with larger rank. We also find that nearly half of the heterotic landscape is nonsupersymmetric and yet tachyon-free at tree level; indeed, less than a quarter of the tree-level heterotic landscape exhibits any supersymmetry at all at the string scale.

AB - One of the goals of the landscape program in string theory is to extract information about the space of string vacua in the form of statistical correlations between phenomenological features that are otherwise uncorrelated in field theory. Such correlations would thus represent predictions of string theory that hold independently of a vacuum-selection principle. In this paper, we study statistical correlations between two features which are likely to be central to any potential description of nature at high-energy scales: gauge symmetries and spacetime supersymmetry. We analyze correlations between these two kinds of symmetry within the context of perturbative heterotic string vacua, and find a number of striking features. We find, for example, that the degree of spacetime supersymmetry is strongly correlated with the probabilities of realizing certain gauge groups, with unbroken supersymmetry at the string scale tending to favor gauge-group factors with larger rank. We also find that nearly half of the heterotic landscape is nonsupersymmetric and yet tachyon-free at tree level; indeed, less than a quarter of the tree-level heterotic landscape exhibits any supersymmetry at all at the string scale.

UR - http://www.scopus.com/inward/record.url?scp=34347386235&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34347386235&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.75.126005

DO - 10.1103/PhysRevD.75.126005

M3 - Article

AN - SCOPUS:34347386235

VL - 75

JO - Physical review D: Particles and fields

JF - Physical review D: Particles and fields

SN - 0556-2821

IS - 12

M1 - 126005

ER -