Surface singularities of ideal fluid

E. A. Kuznetsov, M. D. Spector, V. E. Zakharov

Research output: Contribution to journalArticle

27 Scopus citations

Abstract

We show that the equations of motion of an ideal fluid with a free surface due to inertial forces only can be effectively solved in the approximation of small surface angles. For almost arbitrary initial conditions the system evolves to the formation of singularities in a finite time. Three kinds of singularities are shown to be possible: the root ones for which the process of the singularity formation represents some analog of the wave breaking; singularities in the form of wedges on the interface; the floating ones associated with motion in the complex plane of the singular points of the analytical continuation of the surface shape.

Original languageEnglish (US)
Pages (from-to)387-393
Number of pages7
JournalPhysics Letters A
Volume182
Issue number4-6
DOIs
StatePublished - Nov 22 1993
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this