Synaptic interactions between a muscle-associated proprioceptor and body wall muscle motor neurons in larval and adult Manduca sexta

Dawn A. Tamarkin, Richard B Levine

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

1. Synaptic remodeling of a proprioceptive circuit during metamorphosis of the insect, Manduca sexta, is described. The stretch receptor organ is a muscle-associated proprioceptor that is innervated by a single sensory neuron. It inserts dorsolaterally in the abdomen in parallel with the intersegmental muscles of each abdominal segment. The synaptic input from the stretch receptor sensory neuron to select abdominal internal (intersegmental) and external muscle motor neurons was characterized in both the larva and adult. 2. In the larva, the sensory neuron provides excitatory synaptic input to motor neurons that innervate muscles ipsilateral to the stretch receptor organ in the body wall; the strongest excitatory synaptic input is to motor neurons that innervate targets in close proximity to the stretch receptor organ. The sensory neuron also provides excitatory synaptic input to motor neurons that innervate contralateral, dorsal targets. However, it inhibits, apparently through a polysynaptic pathway, motor neurons innervating contralateral, lateral, and ventral targets. 3. The synaptic input to intersegmental muscle motor neurons from the stretch receptor sensory neuron changes during metamorphosis. In contrast to the larva, all motor neurons recorded in the adult (both ipsilateral and contralateral) were excited by the sensory neuron. As in the larva, the adult sensory neuron provides the strongest excitatory synaptic input to motor neurons innervating targets in close proximity to the stretch receptor organ. 4. The proprioceptive input to the body wall muscle motor neurons was evaluated to determine whether the pathway is monosynaptic, as has been described in other systems. Spike- triggered signal averaging and synaptic latency measurements suggested that the strongest excitatory synaptic input to motor neurons involves a monosynaptic pathway.

Original languageEnglish (US)
Pages (from-to)1597-1610
Number of pages14
JournalJournal of Neurophysiology
Volume76
Issue number3
StatePublished - Sep 1996

Fingerprint

Manduca
Motor Neurons
Sensory Receptor Cells
Mechanoreceptors
Muscles
Larva
Abdominal Muscles
Abdomen
Insects

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

@article{ad97b2cad0b74ea1bd712d8edb7917ed,
title = "Synaptic interactions between a muscle-associated proprioceptor and body wall muscle motor neurons in larval and adult Manduca sexta",
abstract = "1. Synaptic remodeling of a proprioceptive circuit during metamorphosis of the insect, Manduca sexta, is described. The stretch receptor organ is a muscle-associated proprioceptor that is innervated by a single sensory neuron. It inserts dorsolaterally in the abdomen in parallel with the intersegmental muscles of each abdominal segment. The synaptic input from the stretch receptor sensory neuron to select abdominal internal (intersegmental) and external muscle motor neurons was characterized in both the larva and adult. 2. In the larva, the sensory neuron provides excitatory synaptic input to motor neurons that innervate muscles ipsilateral to the stretch receptor organ in the body wall; the strongest excitatory synaptic input is to motor neurons that innervate targets in close proximity to the stretch receptor organ. The sensory neuron also provides excitatory synaptic input to motor neurons that innervate contralateral, dorsal targets. However, it inhibits, apparently through a polysynaptic pathway, motor neurons innervating contralateral, lateral, and ventral targets. 3. The synaptic input to intersegmental muscle motor neurons from the stretch receptor sensory neuron changes during metamorphosis. In contrast to the larva, all motor neurons recorded in the adult (both ipsilateral and contralateral) were excited by the sensory neuron. As in the larva, the adult sensory neuron provides the strongest excitatory synaptic input to motor neurons innervating targets in close proximity to the stretch receptor organ. 4. The proprioceptive input to the body wall muscle motor neurons was evaluated to determine whether the pathway is monosynaptic, as has been described in other systems. Spike- triggered signal averaging and synaptic latency measurements suggested that the strongest excitatory synaptic input to motor neurons involves a monosynaptic pathway.",
author = "Tamarkin, {Dawn A.} and Levine, {Richard B}",
year = "1996",
month = "9",
language = "English (US)",
volume = "76",
pages = "1597--1610",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Synaptic interactions between a muscle-associated proprioceptor and body wall muscle motor neurons in larval and adult Manduca sexta

AU - Tamarkin, Dawn A.

AU - Levine, Richard B

PY - 1996/9

Y1 - 1996/9

N2 - 1. Synaptic remodeling of a proprioceptive circuit during metamorphosis of the insect, Manduca sexta, is described. The stretch receptor organ is a muscle-associated proprioceptor that is innervated by a single sensory neuron. It inserts dorsolaterally in the abdomen in parallel with the intersegmental muscles of each abdominal segment. The synaptic input from the stretch receptor sensory neuron to select abdominal internal (intersegmental) and external muscle motor neurons was characterized in both the larva and adult. 2. In the larva, the sensory neuron provides excitatory synaptic input to motor neurons that innervate muscles ipsilateral to the stretch receptor organ in the body wall; the strongest excitatory synaptic input is to motor neurons that innervate targets in close proximity to the stretch receptor organ. The sensory neuron also provides excitatory synaptic input to motor neurons that innervate contralateral, dorsal targets. However, it inhibits, apparently through a polysynaptic pathway, motor neurons innervating contralateral, lateral, and ventral targets. 3. The synaptic input to intersegmental muscle motor neurons from the stretch receptor sensory neuron changes during metamorphosis. In contrast to the larva, all motor neurons recorded in the adult (both ipsilateral and contralateral) were excited by the sensory neuron. As in the larva, the adult sensory neuron provides the strongest excitatory synaptic input to motor neurons innervating targets in close proximity to the stretch receptor organ. 4. The proprioceptive input to the body wall muscle motor neurons was evaluated to determine whether the pathway is monosynaptic, as has been described in other systems. Spike- triggered signal averaging and synaptic latency measurements suggested that the strongest excitatory synaptic input to motor neurons involves a monosynaptic pathway.

AB - 1. Synaptic remodeling of a proprioceptive circuit during metamorphosis of the insect, Manduca sexta, is described. The stretch receptor organ is a muscle-associated proprioceptor that is innervated by a single sensory neuron. It inserts dorsolaterally in the abdomen in parallel with the intersegmental muscles of each abdominal segment. The synaptic input from the stretch receptor sensory neuron to select abdominal internal (intersegmental) and external muscle motor neurons was characterized in both the larva and adult. 2. In the larva, the sensory neuron provides excitatory synaptic input to motor neurons that innervate muscles ipsilateral to the stretch receptor organ in the body wall; the strongest excitatory synaptic input is to motor neurons that innervate targets in close proximity to the stretch receptor organ. The sensory neuron also provides excitatory synaptic input to motor neurons that innervate contralateral, dorsal targets. However, it inhibits, apparently through a polysynaptic pathway, motor neurons innervating contralateral, lateral, and ventral targets. 3. The synaptic input to intersegmental muscle motor neurons from the stretch receptor sensory neuron changes during metamorphosis. In contrast to the larva, all motor neurons recorded in the adult (both ipsilateral and contralateral) were excited by the sensory neuron. As in the larva, the adult sensory neuron provides the strongest excitatory synaptic input to motor neurons innervating targets in close proximity to the stretch receptor organ. 4. The proprioceptive input to the body wall muscle motor neurons was evaluated to determine whether the pathway is monosynaptic, as has been described in other systems. Spike- triggered signal averaging and synaptic latency measurements suggested that the strongest excitatory synaptic input to motor neurons involves a monosynaptic pathway.

UR - http://www.scopus.com/inward/record.url?scp=0029748592&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029748592&partnerID=8YFLogxK

M3 - Article

VL - 76

SP - 1597

EP - 1610

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 3

ER -