Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California

Madalyn S. Blondes, Peter W Reiners, Mihai N Ducea, Brad S. Singer, John Chesley

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal-compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063-0.7055) and εNd increases (- 3.4 to - 1.1). 187Os/188Os is highly radiogenic (0.20-0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105-106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100-102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal-compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.

Original languageEnglish (US)
Pages (from-to)140-154
Number of pages15
JournalEarth and Planetary Science Letters
Volume269
Issue number1-2
DOIs
StatePublished - May 15 2008

Fingerprint

basalt
Cones
volcanology
volcanic eruption
volcanic eruptions
timescale
trends
Melting
Vents
Tectonics
canyon
canyons
cones
Quarries
vents
melting
Crystallization
tectonics
Contamination
crustal contamination

Keywords

  • Ar/Ar geochronology
  • isotope geochemistry
  • mantle melting, primitive basalts
  • petrotectonics
  • volcanic fields

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)

Cite this

Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California. / Blondes, Madalyn S.; Reiners, Peter W; Ducea, Mihai N; Singer, Brad S.; Chesley, John.

In: Earth and Planetary Science Letters, Vol. 269, No. 1-2, 15.05.2008, p. 140-154.

Research output: Contribution to journalArticle

@article{571d62ce25c04c9ebeb1cf75885ad362,
title = "Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California",
abstract = "Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal-compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.{\%}) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063-0.7055) and εNd increases (- 3.4 to - 1.1). 187Os/188Os is highly radiogenic (0.20-0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105-106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100-102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal-compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.",
keywords = "Ar/Ar geochronology, isotope geochemistry, mantle melting, primitive basalts, petrotectonics, volcanic fields",
author = "Blondes, {Madalyn S.} and Reiners, {Peter W} and Ducea, {Mihai N} and Singer, {Brad S.} and John Chesley",
year = "2008",
month = "5",
day = "15",
doi = "10.1016/j.epsl.2008.02.012",
language = "English (US)",
volume = "269",
pages = "140--154",
journal = "Earth and Planetary Sciences Letters",
issn = "0012-821X",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California

AU - Blondes, Madalyn S.

AU - Reiners, Peter W

AU - Ducea, Mihai N

AU - Singer, Brad S.

AU - Chesley, John

PY - 2008/5/15

Y1 - 2008/5/15

N2 - Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal-compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063-0.7055) and εNd increases (- 3.4 to - 1.1). 187Os/188Os is highly radiogenic (0.20-0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105-106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100-102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal-compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.

AB - Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal-compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063-0.7055) and εNd increases (- 3.4 to - 1.1). 187Os/188Os is highly radiogenic (0.20-0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105-106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100-102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal-compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.

KW - Ar/Ar geochronology

KW - isotope geochemistry

KW - mantle melting, primitive basalts

KW - petrotectonics

KW - volcanic fields

UR - http://www.scopus.com/inward/record.url?scp=42649128372&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=42649128372&partnerID=8YFLogxK

U2 - 10.1016/j.epsl.2008.02.012

DO - 10.1016/j.epsl.2008.02.012

M3 - Article

AN - SCOPUS:42649128372

VL - 269

SP - 140

EP - 154

JO - Earth and Planetary Sciences Letters

JF - Earth and Planetary Sciences Letters

SN - 0012-821X

IS - 1-2

ER -