Test and integration results from SuperCam: A 64-pixel array receiver for the 350 GHz atmospheric window

Christopher Groppi, Christopher Walker, Craig Kulesa, Dathon Golish, Jenna Kloosterman, Sander Weinreb, Glenn Jones, Joseph Bardin, Hamdi Mani, Tom Kuiper, Jacob Kooi, Art Lichtenberger, Thomas Cecil, Patrick Puetz, Gopal Narayanan, Abigail Hedden

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

We report on both laboratory and telescope integration results from SuperCam, a 64 pixel imaging spectrometer designed for operation in the astrophysically important 870 micron atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The SuperCam key project is a fully sampled Galactic plane survey covering over 500 square degrees of the Galaxy in 12CO(3-2) and 13CO(3-2) with 0.3 km/s velocity resolution In the past, all heterodyne focal plane arrays have been constructed using discrete mixers, arrayed in the focal plane. SuperCam reduces cryogenic and mechanical complexity by integrating multiple mixers and amplifiers into a single array module with a single set of DC and IF connectors. These modules are housed in a closed-cycle cryostat with a 1.5W capacity 4K cooler. The SuperCam instrument is currently undergoing laboratory testing with four of the eight mixer array modules installed in the cryostat (32 pixels). Work is now underway to perform the necessary modifications at the 10m Heinrich Hertz Telescope to accept the SuperCam system. SuperCam will be installed in the cassegrain cabin of the HHT, including the optical system, IF processing, spectrometers and control electronics. SuperCam will be integrated with the HHT during the 2009-2010 observing season with 32 pixels installed. The system will be upgraded to 64 pixels during the summer of 2010 after assembly of the four additional mixer modules is completed.

Original languageEnglish (US)
Title of host publicationMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V
DOIs
StatePublished - Sep 7 2010
EventMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V - San Diego, CA, United States
Duration: Jun 29 2010Jul 2 2010

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7741
ISSN (Print)0277-786X

Other

OtherMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V
CountryUnited States
CitySan Diego, CA
Period6/29/107/2/10

    Fingerprint

Keywords

  • array receiver
  • heterodyne
  • submillimeter

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Groppi, C., Walker, C., Kulesa, C., Golish, D., Kloosterman, J., Weinreb, S., Jones, G., Bardin, J., Mani, H., Kuiper, T., Kooi, J., Lichtenberger, A., Cecil, T., Puetz, P., Narayanan, G., & Hedden, A. (2010). Test and integration results from SuperCam: A 64-pixel array receiver for the 350 GHz atmospheric window. In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V [77410X] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 7741). https://doi.org/10.1117/12.857504