The Concentric Maclaurin Spheroid method with tides and a rotational enhancement of Saturn's tidal response

Sean M. Wahl, William B. Hubbard, Burkhard Militzer

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

We extend to three dimensions the Concentric Maclaurin Spheroid method for obtaining the self-consistent shape and gravitational field of a rotating liquid planet, to include a tidal potential from a satellite. We exhibit, for the first time, an important effect of the planetary rotation rate on tidal response of gas giants, whose shape is dominated by the centrifugal potential from rapid rotation. Simulations of planets with fast rotation rates like those of Jupiter and Saturn, exhibit significant changes in calculated tidal love numbers knm when compared with non-rotating bodies. A test model of Saturn fitted to observed zonal gravitational multipole harmonics yields k2=0.413, consistent with a recent observational determination from Cassini astrometry data (Lainey et al., 2016.). The calculated love number is robust under reasonable assumptions of interior rotation rate, satellite parameters, and details of Saturn's interior structure. The method is benchmarked against several published test cases.

Original languageEnglish (US)
Pages (from-to)183-194
Number of pages12
JournalIcarus
Volume282
DOIs
StatePublished - Jan 15 2017

Fingerprint

spheroids
Saturn
tides
tide
augmentation
planets
planet
planetary rotation
rotating liquids
astrometry
Jupiter (planet)
Jupiter
model test
gravitational fields
multipoles
harmonics
liquid
gases
gas
simulation

Keywords

  • Interiors
  • Jovian planets
  • Saturn
  • Tides

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

The Concentric Maclaurin Spheroid method with tides and a rotational enhancement of Saturn's tidal response. / Wahl, Sean M.; Hubbard, William B.; Militzer, Burkhard.

In: Icarus, Vol. 282, 15.01.2017, p. 183-194.

Research output: Contribution to journalArticle

@article{bcbc19e6c8f0434abdbbf2796a2830c5,
title = "The Concentric Maclaurin Spheroid method with tides and a rotational enhancement of Saturn's tidal response",
abstract = "We extend to three dimensions the Concentric Maclaurin Spheroid method for obtaining the self-consistent shape and gravitational field of a rotating liquid planet, to include a tidal potential from a satellite. We exhibit, for the first time, an important effect of the planetary rotation rate on tidal response of gas giants, whose shape is dominated by the centrifugal potential from rapid rotation. Simulations of planets with fast rotation rates like those of Jupiter and Saturn, exhibit significant changes in calculated tidal love numbers knm when compared with non-rotating bodies. A test model of Saturn fitted to observed zonal gravitational multipole harmonics yields k2=0.413, consistent with a recent observational determination from Cassini astrometry data (Lainey et al., 2016.). The calculated love number is robust under reasonable assumptions of interior rotation rate, satellite parameters, and details of Saturn's interior structure. The method is benchmarked against several published test cases.",
keywords = "Interiors, Jovian planets, Saturn, Tides",
author = "Wahl, {Sean M.} and Hubbard, {William B.} and Burkhard Militzer",
year = "2017",
month = "1",
day = "15",
doi = "10.1016/j.icarus.2016.09.011",
language = "English (US)",
volume = "282",
pages = "183--194",
journal = "Icarus",
issn = "0019-1035",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - The Concentric Maclaurin Spheroid method with tides and a rotational enhancement of Saturn's tidal response

AU - Wahl, Sean M.

AU - Hubbard, William B.

AU - Militzer, Burkhard

PY - 2017/1/15

Y1 - 2017/1/15

N2 - We extend to three dimensions the Concentric Maclaurin Spheroid method for obtaining the self-consistent shape and gravitational field of a rotating liquid planet, to include a tidal potential from a satellite. We exhibit, for the first time, an important effect of the planetary rotation rate on tidal response of gas giants, whose shape is dominated by the centrifugal potential from rapid rotation. Simulations of planets with fast rotation rates like those of Jupiter and Saturn, exhibit significant changes in calculated tidal love numbers knm when compared with non-rotating bodies. A test model of Saturn fitted to observed zonal gravitational multipole harmonics yields k2=0.413, consistent with a recent observational determination from Cassini astrometry data (Lainey et al., 2016.). The calculated love number is robust under reasonable assumptions of interior rotation rate, satellite parameters, and details of Saturn's interior structure. The method is benchmarked against several published test cases.

AB - We extend to three dimensions the Concentric Maclaurin Spheroid method for obtaining the self-consistent shape and gravitational field of a rotating liquid planet, to include a tidal potential from a satellite. We exhibit, for the first time, an important effect of the planetary rotation rate on tidal response of gas giants, whose shape is dominated by the centrifugal potential from rapid rotation. Simulations of planets with fast rotation rates like those of Jupiter and Saturn, exhibit significant changes in calculated tidal love numbers knm when compared with non-rotating bodies. A test model of Saturn fitted to observed zonal gravitational multipole harmonics yields k2=0.413, consistent with a recent observational determination from Cassini astrometry data (Lainey et al., 2016.). The calculated love number is robust under reasonable assumptions of interior rotation rate, satellite parameters, and details of Saturn's interior structure. The method is benchmarked against several published test cases.

KW - Interiors

KW - Jovian planets

KW - Saturn

KW - Tides

UR - http://www.scopus.com/inward/record.url?scp=84994559369&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84994559369&partnerID=8YFLogxK

U2 - 10.1016/j.icarus.2016.09.011

DO - 10.1016/j.icarus.2016.09.011

M3 - Article

VL - 282

SP - 183

EP - 194

JO - Icarus

JF - Icarus

SN - 0019-1035

ER -