The dense gas component of outflows in the monoceros OB1 dark cloud

Grace A. Wolf-Chase, Christopher K Walker

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Wolf-Chase, Walker, & Lada (1995, hereafter WWL) found that most of the CS J = 2 → 1 emission in the Mon OB1 dark cloud is concentrated in two regions they refer to as the South Cloud (SCL) and North Cloud (NCL). These regions encompass five of the 10 outflows previously identified in CO by Margulis, Lada, & Snell (1988). The spatial morphologies of the CS J = 5 → 4 and CS J = 7 → 6 emission regions in the SCL (WWL) are significantly different from those of the CS J = 2 → 1 emission. Velocity centroid plots of the CS J = 2 → 1 and CS J = 5 → 4 emission in the line cores indicate that the upper transition primarily traces dense core material, but the lower transition primarily traces dense outflow material. We have found that the CS J = 2 → 1 transition traces a large portion of the dense, low-velocity component of outflows in the Mon OB1 dark cloud. The outflows are identifiable through non-Gaussian, asymmetric wings in the CS J = 2 → 1 lines. This outflow component is not identifiable in CO because the gas in the asymmetric CS line wings is moving at velocities which lie within the core of the much broader CO lines. Two of the outflows which were previously classified as monopolar in CO (Margulis et al. 1988) appear bipolar in CS. We find the mass of this component to be about an order of magnitude greater than previous estimates of the low-velocity outflow component. Comparison of the masses derived for the CS outflows to the masses derived by WWL for the total CS emission in the SCL and NCL indicate that at least 20% of the material in the SCL has been entrained in outflows, and approximately 25%-50% of the material in the NCL is associated with a rotating cloud swept up by an outflow. The addition of the low-velocity CS outflow component to previous estimates of outflow energetics implies that multiple generations of outflows need not be required to support this cloud against collapse. Our results neither support nor rule out the existence of fossil outflows in this cloud. A fully sampled, unbiased survey of the cloud is required to search for such outflows.

Original languageEnglish (US)
Pages (from-to)244-256
Number of pages13
JournalAstrophysical Journal
Volume447
Issue number1
StatePublished - Jul 1 1995

Fingerprint

outflow
gases
gas
low speed
wings
wolves
fossils
estimates
centroids
plots
energetics
fossil

Keywords

  • ISM: individual (Monoceros OB1)
  • ISM: jets and outflows
  • ISM: molecules
  • Molecular processes
  • Radio lines: ISM

ASJC Scopus subject areas

  • Space and Planetary Science

Cite this

The dense gas component of outflows in the monoceros OB1 dark cloud. / Wolf-Chase, Grace A.; Walker, Christopher K.

In: Astrophysical Journal, Vol. 447, No. 1, 01.07.1995, p. 244-256.

Research output: Contribution to journalArticle

@article{b3b7844a32554cc29ed8d82d86a458ac,
title = "The dense gas component of outflows in the monoceros OB1 dark cloud",
abstract = "Wolf-Chase, Walker, & Lada (1995, hereafter WWL) found that most of the CS J = 2 → 1 emission in the Mon OB1 dark cloud is concentrated in two regions they refer to as the South Cloud (SCL) and North Cloud (NCL). These regions encompass five of the 10 outflows previously identified in CO by Margulis, Lada, & Snell (1988). The spatial morphologies of the CS J = 5 → 4 and CS J = 7 → 6 emission regions in the SCL (WWL) are significantly different from those of the CS J = 2 → 1 emission. Velocity centroid plots of the CS J = 2 → 1 and CS J = 5 → 4 emission in the line cores indicate that the upper transition primarily traces dense core material, but the lower transition primarily traces dense outflow material. We have found that the CS J = 2 → 1 transition traces a large portion of the dense, low-velocity component of outflows in the Mon OB1 dark cloud. The outflows are identifiable through non-Gaussian, asymmetric wings in the CS J = 2 → 1 lines. This outflow component is not identifiable in CO because the gas in the asymmetric CS line wings is moving at velocities which lie within the core of the much broader CO lines. Two of the outflows which were previously classified as monopolar in CO (Margulis et al. 1988) appear bipolar in CS. We find the mass of this component to be about an order of magnitude greater than previous estimates of the low-velocity outflow component. Comparison of the masses derived for the CS outflows to the masses derived by WWL for the total CS emission in the SCL and NCL indicate that at least 20{\%} of the material in the SCL has been entrained in outflows, and approximately 25{\%}-50{\%} of the material in the NCL is associated with a rotating cloud swept up by an outflow. The addition of the low-velocity CS outflow component to previous estimates of outflow energetics implies that multiple generations of outflows need not be required to support this cloud against collapse. Our results neither support nor rule out the existence of fossil outflows in this cloud. A fully sampled, unbiased survey of the cloud is required to search for such outflows.",
keywords = "ISM: individual (Monoceros OB1), ISM: jets and outflows, ISM: molecules, Molecular processes, Radio lines: ISM",
author = "Wolf-Chase, {Grace A.} and Walker, {Christopher K}",
year = "1995",
month = "7",
day = "1",
language = "English (US)",
volume = "447",
pages = "244--256",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "1",

}

TY - JOUR

T1 - The dense gas component of outflows in the monoceros OB1 dark cloud

AU - Wolf-Chase, Grace A.

AU - Walker, Christopher K

PY - 1995/7/1

Y1 - 1995/7/1

N2 - Wolf-Chase, Walker, & Lada (1995, hereafter WWL) found that most of the CS J = 2 → 1 emission in the Mon OB1 dark cloud is concentrated in two regions they refer to as the South Cloud (SCL) and North Cloud (NCL). These regions encompass five of the 10 outflows previously identified in CO by Margulis, Lada, & Snell (1988). The spatial morphologies of the CS J = 5 → 4 and CS J = 7 → 6 emission regions in the SCL (WWL) are significantly different from those of the CS J = 2 → 1 emission. Velocity centroid plots of the CS J = 2 → 1 and CS J = 5 → 4 emission in the line cores indicate that the upper transition primarily traces dense core material, but the lower transition primarily traces dense outflow material. We have found that the CS J = 2 → 1 transition traces a large portion of the dense, low-velocity component of outflows in the Mon OB1 dark cloud. The outflows are identifiable through non-Gaussian, asymmetric wings in the CS J = 2 → 1 lines. This outflow component is not identifiable in CO because the gas in the asymmetric CS line wings is moving at velocities which lie within the core of the much broader CO lines. Two of the outflows which were previously classified as monopolar in CO (Margulis et al. 1988) appear bipolar in CS. We find the mass of this component to be about an order of magnitude greater than previous estimates of the low-velocity outflow component. Comparison of the masses derived for the CS outflows to the masses derived by WWL for the total CS emission in the SCL and NCL indicate that at least 20% of the material in the SCL has been entrained in outflows, and approximately 25%-50% of the material in the NCL is associated with a rotating cloud swept up by an outflow. The addition of the low-velocity CS outflow component to previous estimates of outflow energetics implies that multiple generations of outflows need not be required to support this cloud against collapse. Our results neither support nor rule out the existence of fossil outflows in this cloud. A fully sampled, unbiased survey of the cloud is required to search for such outflows.

AB - Wolf-Chase, Walker, & Lada (1995, hereafter WWL) found that most of the CS J = 2 → 1 emission in the Mon OB1 dark cloud is concentrated in two regions they refer to as the South Cloud (SCL) and North Cloud (NCL). These regions encompass five of the 10 outflows previously identified in CO by Margulis, Lada, & Snell (1988). The spatial morphologies of the CS J = 5 → 4 and CS J = 7 → 6 emission regions in the SCL (WWL) are significantly different from those of the CS J = 2 → 1 emission. Velocity centroid plots of the CS J = 2 → 1 and CS J = 5 → 4 emission in the line cores indicate that the upper transition primarily traces dense core material, but the lower transition primarily traces dense outflow material. We have found that the CS J = 2 → 1 transition traces a large portion of the dense, low-velocity component of outflows in the Mon OB1 dark cloud. The outflows are identifiable through non-Gaussian, asymmetric wings in the CS J = 2 → 1 lines. This outflow component is not identifiable in CO because the gas in the asymmetric CS line wings is moving at velocities which lie within the core of the much broader CO lines. Two of the outflows which were previously classified as monopolar in CO (Margulis et al. 1988) appear bipolar in CS. We find the mass of this component to be about an order of magnitude greater than previous estimates of the low-velocity outflow component. Comparison of the masses derived for the CS outflows to the masses derived by WWL for the total CS emission in the SCL and NCL indicate that at least 20% of the material in the SCL has been entrained in outflows, and approximately 25%-50% of the material in the NCL is associated with a rotating cloud swept up by an outflow. The addition of the low-velocity CS outflow component to previous estimates of outflow energetics implies that multiple generations of outflows need not be required to support this cloud against collapse. Our results neither support nor rule out the existence of fossil outflows in this cloud. A fully sampled, unbiased survey of the cloud is required to search for such outflows.

KW - ISM: individual (Monoceros OB1)

KW - ISM: jets and outflows

KW - ISM: molecules

KW - Molecular processes

KW - Radio lines: ISM

UR - http://www.scopus.com/inward/record.url?scp=11944258807&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=11944258807&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:11944258807

VL - 447

SP - 244

EP - 256

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 1

ER -