The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

Nathan J. DeYonker, De Wayne T. Halfen, Wesley D. Allen, Lucy M. Ziurys

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlationconsistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, D¯e, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ∼11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

Original languageEnglish (US)
Article number204302
JournalJournal of Chemical Physics
Volume141
Issue number20
DOIs
StatePublished - Nov 28 2014

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'The electronic structure of vanadium monochloride cation (VCl<sup>+</sup>): Tackling the complexities of transition metal species'. Together they form a unique fingerprint.

  • Cite this