### Abstract

The solution of the Fokker-Planck equation describing the motion of an isotropic burst of ions originating at the center of an infinite medium and undergoing small angle deflections is obtained in terms of generalized functions using the multiple collision approach. The resulting solution can be shown to define a functional on the test function space S_{α} ^{β} for α≥1/2 and β≤1/2 and the space of polynomials specifying the dynamic moments.

Original language | English (US) |
---|---|

Pages (from-to) | 1076-1079 |

Number of pages | 4 |

Journal | Journal of Mathematical Physics |

Volume | 25 |

Issue number | 4 |

State | Published - 1984 |

### Fingerprint

### ASJC Scopus subject areas

- Organic Chemistry

### Cite this

*Journal of Mathematical Physics*,

*25*(4), 1076-1079.

**The generalized function solution of the Fokker-Planck equation for monoenergetic charged particle transport.** / Ganapol, Barry D; Parlette, E. B.

Research output: Contribution to journal › Article

*Journal of Mathematical Physics*, vol. 25, no. 4, pp. 1076-1079.

}

TY - JOUR

T1 - The generalized function solution of the Fokker-Planck equation for monoenergetic charged particle transport

AU - Ganapol, Barry D

AU - Parlette, E. B.

PY - 1984

Y1 - 1984

N2 - The solution of the Fokker-Planck equation describing the motion of an isotropic burst of ions originating at the center of an infinite medium and undergoing small angle deflections is obtained in terms of generalized functions using the multiple collision approach. The resulting solution can be shown to define a functional on the test function space Sα β for α≥1/2 and β≤1/2 and the space of polynomials specifying the dynamic moments.

AB - The solution of the Fokker-Planck equation describing the motion of an isotropic burst of ions originating at the center of an infinite medium and undergoing small angle deflections is obtained in terms of generalized functions using the multiple collision approach. The resulting solution can be shown to define a functional on the test function space Sα β for α≥1/2 and β≤1/2 and the space of polynomials specifying the dynamic moments.

UR - http://www.scopus.com/inward/record.url?scp=36549098820&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36549098820&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:36549098820

VL - 25

SP - 1076

EP - 1079

JO - Journal of Mathematical Physics

JF - Journal of Mathematical Physics

SN - 0022-2488

IS - 4

ER -