The mid-plane of the main asteroid belt

Saverio Cambioni, Renu Malhotra

Research output: Contribution to journalArticlepeer-review

Abstract

We measure the mid-plane of the main asteroid belt by using the observational data of a nearly complete and unbiased sample of asteroids, and find that it has inclination I = 0.93 ± 0.04 degrees and longitude of ascending node Ω = 87.6 ± 2.6 degrees (in J2000 ecliptic-equinox coordinate system). This plane differs significantly from previously published measurements, and it is also distinctly different than the solar system's invariable plane as well as Jupiter's orbit plane. The mid-plane of the asteroid belt is theoretically expected to be a slightly warped sheet whose local normal is controlled by the gravity of the major planets. Specifically, its inclination and longitude of ascending node varies with semi-major axis and time (on secular timescales), and is defined by the forced solution of secular perturbation theory; the ν16nodal secular resonance is predicted to cause a significant warp of the mid-plane in the inner asteroid belt. We test the secular theory by measuring the current location of the asteroids' mid-plane in finer semi-major axis bins. We find that the measured mid-plane in the middle and outer asteroid belt is consistent, within 3-σ confidence level, with the prediction of secular perturbation theory, but a notable discrepancy is present in the inner asteroid belt near ∼ 2 AU.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Jan 24 2018

Keywords

  • Asteroids: general
  • Celestial mechanics
  • Minor planets
  • Planets and satellites: fundamental parameters

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'The mid-plane of the main asteroid belt'. Together they form a unique fingerprint.

Cite this