The modulo 2 structure of rank 3 permutation modules for odd characteristic symplectic groups

J. M. Lataille, Peter Sin, Pham Huu Tiep

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

This paper studies the permutation representation of the symplectic group Sp(2m, Fq), where q is odd, on the 1-spaces of its natural module. The complete submodule lattice for the modulo ℓ reduction of this permutation module is known for all odd primes ℓ not dividing q. In this paper we determine the complete submodule lattice for the mod 2 reduction. Similar results are then obtained for the orthogonal group O(5, Fq).

Original languageEnglish (US)
Pages (from-to)463-483
Number of pages21
JournalJournal of Algebra
Volume268
Issue number2
DOIs
StatePublished - Oct 15 2003
Externally publishedYes

Fingerprint

Symplectic Group
Modulo
Permutation
Odd
Permutation Representation
Module
Orthogonal Group

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

The modulo 2 structure of rank 3 permutation modules for odd characteristic symplectic groups. / Lataille, J. M.; Sin, Peter; Tiep, Pham Huu.

In: Journal of Algebra, Vol. 268, No. 2, 15.10.2003, p. 463-483.

Research output: Contribution to journalArticle

@article{e80a40cf46b641babf31546952c03fa5,
title = "The modulo 2 structure of rank 3 permutation modules for odd characteristic symplectic groups",
abstract = "This paper studies the permutation representation of the symplectic group Sp(2m, Fq), where q is odd, on the 1-spaces of its natural module. The complete submodule lattice for the modulo ℓ reduction of this permutation module is known for all odd primes ℓ not dividing q. In this paper we determine the complete submodule lattice for the mod 2 reduction. Similar results are then obtained for the orthogonal group O(5, Fq).",
author = "Lataille, {J. M.} and Peter Sin and Tiep, {Pham Huu}",
year = "2003",
month = "10",
day = "15",
doi = "10.1016/S0021-8693(03)00229-1",
language = "English (US)",
volume = "268",
pages = "463--483",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - The modulo 2 structure of rank 3 permutation modules for odd characteristic symplectic groups

AU - Lataille, J. M.

AU - Sin, Peter

AU - Tiep, Pham Huu

PY - 2003/10/15

Y1 - 2003/10/15

N2 - This paper studies the permutation representation of the symplectic group Sp(2m, Fq), where q is odd, on the 1-spaces of its natural module. The complete submodule lattice for the modulo ℓ reduction of this permutation module is known for all odd primes ℓ not dividing q. In this paper we determine the complete submodule lattice for the mod 2 reduction. Similar results are then obtained for the orthogonal group O(5, Fq).

AB - This paper studies the permutation representation of the symplectic group Sp(2m, Fq), where q is odd, on the 1-spaces of its natural module. The complete submodule lattice for the modulo ℓ reduction of this permutation module is known for all odd primes ℓ not dividing q. In this paper we determine the complete submodule lattice for the mod 2 reduction. Similar results are then obtained for the orthogonal group O(5, Fq).

UR - http://www.scopus.com/inward/record.url?scp=0242425105&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0242425105&partnerID=8YFLogxK

U2 - 10.1016/S0021-8693(03)00229-1

DO - 10.1016/S0021-8693(03)00229-1

M3 - Article

VL - 268

SP - 463

EP - 483

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

IS - 2

ER -