The nature and origin of low-redshift O vi absorbers

Benjamin D. Oppenheimer, Romeel S Dave

Research output: Contribution to journalArticle

92 Citations (Scopus)

Abstract

The O vi ion observed in quasar absorption-line spectra is the most accessible tracer of the cosmic metal distribution in the low-redshift (z < 0.5) intergalactic medium (IGM). We explore the nature and origin of O vi absorbers using cosmological hydrodynamic simulations including galactic outflows with a range of strengths. We consider the effects of ionization background variations, non-equilibrium ionization and cooling, uniform metallicity and small-scale (sub-resolution) turbulence. Our main results are as follows. (1) IGM O vi is predominantly photo-ionized with T ≈ 10 4.2±0.2 K. A key reason for this is that O vi absorbers preferentially trace overenriched (by ∼ ×5) regions of the IGM at a given density, which enhances metal-line cooling such that absorbers can cool to photo-ionized temperatures within a Hubble time. As such, O vi is not a good tracer of the warm-hot intergalactic medium. (2) The predicted O vi properties fit observables if and only if sub-resolution turbulence is added, regardless of any other model variations. The required turbulence increases with O vi absorber strength. Stronger absorbers arise from more recent outflows, so qualitatively this can be understood if IGM turbulence dissipates on the order of a Hubble time. The amount of turbulence is consistent with other examples of turbulence observed in the IGM and galactic haloes. (3) Metals traced by O vi and H i do not trace exactly the same baryons, but reside in the same large-scale structure. Our simulations reproduce observed alignment statistics between O vi and H i, yet aligned absorbers typically have O vi arising from cooler gas, and for stronger absorbers lower densities, than H i. Owing to peculiar velocities dominating the line structure, coincident absorption often arises from spatially distinct gas. (4) Photo-ionized O vi traces gas in a variety of environments, and is not directly associated with the nearest galaxy, though is typically nearest to ∼0.1L* galaxies. Weaker O vi components trace some of the oldest cosmic metals. (5) Very strong absorbers (EW ≳ 100 m) are more likely to be collisionally ionized, tracing more recent enrichment (≲2 Gyr) within or near galactic haloes.

Original languageEnglish (US)
Pages (from-to)1875-1904
Number of pages30
JournalMonthly Notices of the Royal Astronomical Society
Volume395
Issue number4
DOIs
StatePublished - Jun 2009

Fingerprint

intergalactic media
absorbers
turbulence
metal
galactic halos
ionization
outflow
tracer
metals
cooling
tracers
gases
nonequilibrium ionization
galaxies
trace gas
gas
simulation
tracing
hydrodynamics
coolers

Keywords

  • Cosmology: theory
  • Galaxies: evolution
  • intergalactic medium
  • Methods: numerical

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this

The nature and origin of low-redshift O vi absorbers. / Oppenheimer, Benjamin D.; Dave, Romeel S.

In: Monthly Notices of the Royal Astronomical Society, Vol. 395, No. 4, 06.2009, p. 1875-1904.

Research output: Contribution to journalArticle

@article{1c1c39dc475743d2a29f9b40b0f625b8,
title = "The nature and origin of low-redshift O vi absorbers",
abstract = "The O vi ion observed in quasar absorption-line spectra is the most accessible tracer of the cosmic metal distribution in the low-redshift (z < 0.5) intergalactic medium (IGM). We explore the nature and origin of O vi absorbers using cosmological hydrodynamic simulations including galactic outflows with a range of strengths. We consider the effects of ionization background variations, non-equilibrium ionization and cooling, uniform metallicity and small-scale (sub-resolution) turbulence. Our main results are as follows. (1) IGM O vi is predominantly photo-ionized with T ≈ 10 4.2±0.2 K. A key reason for this is that O vi absorbers preferentially trace overenriched (by ∼ ×5) regions of the IGM at a given density, which enhances metal-line cooling such that absorbers can cool to photo-ionized temperatures within a Hubble time. As such, O vi is not a good tracer of the warm-hot intergalactic medium. (2) The predicted O vi properties fit observables if and only if sub-resolution turbulence is added, regardless of any other model variations. The required turbulence increases with O vi absorber strength. Stronger absorbers arise from more recent outflows, so qualitatively this can be understood if IGM turbulence dissipates on the order of a Hubble time. The amount of turbulence is consistent with other examples of turbulence observed in the IGM and galactic haloes. (3) Metals traced by O vi and H i do not trace exactly the same baryons, but reside in the same large-scale structure. Our simulations reproduce observed alignment statistics between O vi and H i, yet aligned absorbers typically have O vi arising from cooler gas, and for stronger absorbers lower densities, than H i. Owing to peculiar velocities dominating the line structure, coincident absorption often arises from spatially distinct gas. (4) Photo-ionized O vi traces gas in a variety of environments, and is not directly associated with the nearest galaxy, though is typically nearest to ∼0.1L* galaxies. Weaker O vi components trace some of the oldest cosmic metals. (5) Very strong absorbers (EW ≳ 100 m) are more likely to be collisionally ionized, tracing more recent enrichment (≲2 Gyr) within or near galactic haloes.",
keywords = "Cosmology: theory, Galaxies: evolution, intergalactic medium, Methods: numerical",
author = "Oppenheimer, {Benjamin D.} and Dave, {Romeel S}",
year = "2009",
month = "6",
doi = "10.1111/j.1365-2966.2009.14676.x",
language = "English (US)",
volume = "395",
pages = "1875--1904",
journal = "Monthly Notices of the Royal Astronomical Society",
issn = "0035-8711",
publisher = "Oxford University Press",
number = "4",

}

TY - JOUR

T1 - The nature and origin of low-redshift O vi absorbers

AU - Oppenheimer, Benjamin D.

AU - Dave, Romeel S

PY - 2009/6

Y1 - 2009/6

N2 - The O vi ion observed in quasar absorption-line spectra is the most accessible tracer of the cosmic metal distribution in the low-redshift (z < 0.5) intergalactic medium (IGM). We explore the nature and origin of O vi absorbers using cosmological hydrodynamic simulations including galactic outflows with a range of strengths. We consider the effects of ionization background variations, non-equilibrium ionization and cooling, uniform metallicity and small-scale (sub-resolution) turbulence. Our main results are as follows. (1) IGM O vi is predominantly photo-ionized with T ≈ 10 4.2±0.2 K. A key reason for this is that O vi absorbers preferentially trace overenriched (by ∼ ×5) regions of the IGM at a given density, which enhances metal-line cooling such that absorbers can cool to photo-ionized temperatures within a Hubble time. As such, O vi is not a good tracer of the warm-hot intergalactic medium. (2) The predicted O vi properties fit observables if and only if sub-resolution turbulence is added, regardless of any other model variations. The required turbulence increases with O vi absorber strength. Stronger absorbers arise from more recent outflows, so qualitatively this can be understood if IGM turbulence dissipates on the order of a Hubble time. The amount of turbulence is consistent with other examples of turbulence observed in the IGM and galactic haloes. (3) Metals traced by O vi and H i do not trace exactly the same baryons, but reside in the same large-scale structure. Our simulations reproduce observed alignment statistics between O vi and H i, yet aligned absorbers typically have O vi arising from cooler gas, and for stronger absorbers lower densities, than H i. Owing to peculiar velocities dominating the line structure, coincident absorption often arises from spatially distinct gas. (4) Photo-ionized O vi traces gas in a variety of environments, and is not directly associated with the nearest galaxy, though is typically nearest to ∼0.1L* galaxies. Weaker O vi components trace some of the oldest cosmic metals. (5) Very strong absorbers (EW ≳ 100 m) are more likely to be collisionally ionized, tracing more recent enrichment (≲2 Gyr) within or near galactic haloes.

AB - The O vi ion observed in quasar absorption-line spectra is the most accessible tracer of the cosmic metal distribution in the low-redshift (z < 0.5) intergalactic medium (IGM). We explore the nature and origin of O vi absorbers using cosmological hydrodynamic simulations including galactic outflows with a range of strengths. We consider the effects of ionization background variations, non-equilibrium ionization and cooling, uniform metallicity and small-scale (sub-resolution) turbulence. Our main results are as follows. (1) IGM O vi is predominantly photo-ionized with T ≈ 10 4.2±0.2 K. A key reason for this is that O vi absorbers preferentially trace overenriched (by ∼ ×5) regions of the IGM at a given density, which enhances metal-line cooling such that absorbers can cool to photo-ionized temperatures within a Hubble time. As such, O vi is not a good tracer of the warm-hot intergalactic medium. (2) The predicted O vi properties fit observables if and only if sub-resolution turbulence is added, regardless of any other model variations. The required turbulence increases with O vi absorber strength. Stronger absorbers arise from more recent outflows, so qualitatively this can be understood if IGM turbulence dissipates on the order of a Hubble time. The amount of turbulence is consistent with other examples of turbulence observed in the IGM and galactic haloes. (3) Metals traced by O vi and H i do not trace exactly the same baryons, but reside in the same large-scale structure. Our simulations reproduce observed alignment statistics between O vi and H i, yet aligned absorbers typically have O vi arising from cooler gas, and for stronger absorbers lower densities, than H i. Owing to peculiar velocities dominating the line structure, coincident absorption often arises from spatially distinct gas. (4) Photo-ionized O vi traces gas in a variety of environments, and is not directly associated with the nearest galaxy, though is typically nearest to ∼0.1L* galaxies. Weaker O vi components trace some of the oldest cosmic metals. (5) Very strong absorbers (EW ≳ 100 m) are more likely to be collisionally ionized, tracing more recent enrichment (≲2 Gyr) within or near galactic haloes.

KW - Cosmology: theory

KW - Galaxies: evolution

KW - intergalactic medium

KW - Methods: numerical

UR - http://www.scopus.com/inward/record.url?scp=66149160599&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=66149160599&partnerID=8YFLogxK

U2 - 10.1111/j.1365-2966.2009.14676.x

DO - 10.1111/j.1365-2966.2009.14676.x

M3 - Article

VL - 395

SP - 1875

EP - 1904

JO - Monthly Notices of the Royal Astronomical Society

JF - Monthly Notices of the Royal Astronomical Society

SN - 0035-8711

IS - 4

ER -