### Abstract

In this note, we use geometric arguments to derive a possible form for the radial part of the "zero-mode Hamiltonian" for the two-dimensional sigma model with target space S^{3}, or more generally a compact simply connected Lie group.

Original language | English (US) |
---|---|

Pages (from-to) | 603-628 |

Number of pages | 26 |

Journal | Reviews in Mathematical Physics |

Volume | 16 |

Issue number | 5 |

DOIs | |

State | Published - Jun 2004 |

### Fingerprint

### Keywords

- Hamiltonian
- loop group
- Sigma model
- Wiener measure

### ASJC Scopus subject areas

- Physics and Astronomy(all)
- Statistical and Nonlinear Physics
- Mathematical Physics

### Cite this

**The radial part of the zero-mode Hamiltonian for sigma models with group target space.** / Pickrell, Douglas M.

Research output: Contribution to journal › Article

}

TY - JOUR

T1 - The radial part of the zero-mode Hamiltonian for sigma models with group target space

AU - Pickrell, Douglas M

PY - 2004/6

Y1 - 2004/6

N2 - In this note, we use geometric arguments to derive a possible form for the radial part of the "zero-mode Hamiltonian" for the two-dimensional sigma model with target space S3, or more generally a compact simply connected Lie group.

AB - In this note, we use geometric arguments to derive a possible form for the radial part of the "zero-mode Hamiltonian" for the two-dimensional sigma model with target space S3, or more generally a compact simply connected Lie group.

KW - Hamiltonian

KW - loop group

KW - Sigma model

KW - Wiener measure

UR - http://www.scopus.com/inward/record.url?scp=13844251920&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=13844251920&partnerID=8YFLogxK

U2 - 10.1142/S0129055X04002138

DO - 10.1142/S0129055X04002138

M3 - Article

VL - 16

SP - 603

EP - 628

JO - Reviews in Mathematical Physics

JF - Reviews in Mathematical Physics

SN - 0129-055X

IS - 5

ER -