The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics

Aaron A. King, William M Schaffer

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

In the presence of seasonal forcing, the intricate topology of non-integrable Hamiltonian predator-prey models is shown to exercise profound effects on the dynamics and bifurcation structure of more realistic schemes which do not admit a Hamiltonian formulation. The demonstration of this fact is accomplished by writing the more general models as perturbations of a Hamiltonian limit, ℋ, in which are contained infinite numbers of periodic, quasiperiodic and chaotic motions. From ℋ, there emanates a surface, Γ, of Nejmark-Sacker bifurcations whereby the annual oscillations induced by seasonality are destabilized. Connecting Γ and ℋ is a bridge of resonance horns within which invariant motions of the Hamiltonian case persist. The boundaries of the resonance horns are curves of tangent (saddle-node) bifurcations corresponding to subharmonics of the yearly cycle. Associated with each horn is a rotation number which determines the dominant frequency, or "color", of attractors within the horn. When viewed through the necessarily coarse filter of ecological data acquisition, and regardless of their detailed topology, these attractors are often indistinguishable from multi-annual cycles. Because the tips of the horns line up monotonically along Γ, it further follows that the distribution of observable periods in systems subject to fluctuating parameter values induced, for example, by year-to-year variations in the climate, will often exhibit a discernible central tendency. In short, the bifurcation structure is consistent with the observation of multi-annual cycles in Nature. Fundamentally, this is a consequence of the fact that the bridge between ℋ and Γ is a rainbow bridge. While the present analysis is principally concerned with the two species case (one predator and one prey), Hamiltonian limits are also observed in other ecological contexts: 2n-species (n predators, n prey) systems and periodically-forced three level food chain models. Hamiltonian limits may thus be common in models involving the destruction of one species by another. Given the oft-commented upon structural instability of Hamiltonian systems and the corresponding lack of regard in which they are held as useful caricatures of ecological interactions, the pivotal role assigned here to Hamiltonian limits constitutes a qualitative break with the conventional wisdom.

Original languageEnglish (US)
Pages (from-to)439-469
Number of pages31
JournalJournal of Mathematical Biology
Volume39
Issue number5
StatePublished - Nov 1999

Fingerprint

Hamiltonians
Predator-prey
Horns
predators
Annual
Bifurcation
topology
Predator
Prey
Cycle
Caricatures
Attractor
saddles
Food Chain
Food Chain Model
Quasi-periodic Motion
Topology
Hamiltonian Formulation
Seasonality
Saddle-node Bifurcation

Keywords

  • Bifurcation
  • Chaos
  • Cyclic population
  • Hamiltonian dynamics
  • Multi-annual cycle
  • Population dynamics
  • Predator-prey
  • Seasonality
  • Spectral analysis
  • Subharmonic resonance

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Mathematics (miscellaneous)

Cite this

The rainbow bridge : Hamiltonian limits and resonance in predator-prey dynamics. / King, Aaron A.; Schaffer, William M.

In: Journal of Mathematical Biology, Vol. 39, No. 5, 11.1999, p. 439-469.

Research output: Contribution to journalArticle

@article{18b7f2cba11f495cbdc8e8a0ab532d79,
title = "The rainbow bridge: Hamiltonian limits and resonance in predator-prey dynamics",
abstract = "In the presence of seasonal forcing, the intricate topology of non-integrable Hamiltonian predator-prey models is shown to exercise profound effects on the dynamics and bifurcation structure of more realistic schemes which do not admit a Hamiltonian formulation. The demonstration of this fact is accomplished by writing the more general models as perturbations of a Hamiltonian limit, ℋ, in which are contained infinite numbers of periodic, quasiperiodic and chaotic motions. From ℋ, there emanates a surface, Γ, of Nejmark-Sacker bifurcations whereby the annual oscillations induced by seasonality are destabilized. Connecting Γ and ℋ is a bridge of resonance horns within which invariant motions of the Hamiltonian case persist. The boundaries of the resonance horns are curves of tangent (saddle-node) bifurcations corresponding to subharmonics of the yearly cycle. Associated with each horn is a rotation number which determines the dominant frequency, or {"}color{"}, of attractors within the horn. When viewed through the necessarily coarse filter of ecological data acquisition, and regardless of their detailed topology, these attractors are often indistinguishable from multi-annual cycles. Because the tips of the horns line up monotonically along Γ, it further follows that the distribution of observable periods in systems subject to fluctuating parameter values induced, for example, by year-to-year variations in the climate, will often exhibit a discernible central tendency. In short, the bifurcation structure is consistent with the observation of multi-annual cycles in Nature. Fundamentally, this is a consequence of the fact that the bridge between ℋ and Γ is a rainbow bridge. While the present analysis is principally concerned with the two species case (one predator and one prey), Hamiltonian limits are also observed in other ecological contexts: 2n-species (n predators, n prey) systems and periodically-forced three level food chain models. Hamiltonian limits may thus be common in models involving the destruction of one species by another. Given the oft-commented upon structural instability of Hamiltonian systems and the corresponding lack of regard in which they are held as useful caricatures of ecological interactions, the pivotal role assigned here to Hamiltonian limits constitutes a qualitative break with the conventional wisdom.",
keywords = "Bifurcation, Chaos, Cyclic population, Hamiltonian dynamics, Multi-annual cycle, Population dynamics, Predator-prey, Seasonality, Spectral analysis, Subharmonic resonance",
author = "King, {Aaron A.} and Schaffer, {William M}",
year = "1999",
month = "11",
language = "English (US)",
volume = "39",
pages = "439--469",
journal = "Journal of Mathematical Biology",
issn = "0303-6812",
publisher = "Springer Verlag",
number = "5",

}

TY - JOUR

T1 - The rainbow bridge

T2 - Hamiltonian limits and resonance in predator-prey dynamics

AU - King, Aaron A.

AU - Schaffer, William M

PY - 1999/11

Y1 - 1999/11

N2 - In the presence of seasonal forcing, the intricate topology of non-integrable Hamiltonian predator-prey models is shown to exercise profound effects on the dynamics and bifurcation structure of more realistic schemes which do not admit a Hamiltonian formulation. The demonstration of this fact is accomplished by writing the more general models as perturbations of a Hamiltonian limit, ℋ, in which are contained infinite numbers of periodic, quasiperiodic and chaotic motions. From ℋ, there emanates a surface, Γ, of Nejmark-Sacker bifurcations whereby the annual oscillations induced by seasonality are destabilized. Connecting Γ and ℋ is a bridge of resonance horns within which invariant motions of the Hamiltonian case persist. The boundaries of the resonance horns are curves of tangent (saddle-node) bifurcations corresponding to subharmonics of the yearly cycle. Associated with each horn is a rotation number which determines the dominant frequency, or "color", of attractors within the horn. When viewed through the necessarily coarse filter of ecological data acquisition, and regardless of their detailed topology, these attractors are often indistinguishable from multi-annual cycles. Because the tips of the horns line up monotonically along Γ, it further follows that the distribution of observable periods in systems subject to fluctuating parameter values induced, for example, by year-to-year variations in the climate, will often exhibit a discernible central tendency. In short, the bifurcation structure is consistent with the observation of multi-annual cycles in Nature. Fundamentally, this is a consequence of the fact that the bridge between ℋ and Γ is a rainbow bridge. While the present analysis is principally concerned with the two species case (one predator and one prey), Hamiltonian limits are also observed in other ecological contexts: 2n-species (n predators, n prey) systems and periodically-forced three level food chain models. Hamiltonian limits may thus be common in models involving the destruction of one species by another. Given the oft-commented upon structural instability of Hamiltonian systems and the corresponding lack of regard in which they are held as useful caricatures of ecological interactions, the pivotal role assigned here to Hamiltonian limits constitutes a qualitative break with the conventional wisdom.

AB - In the presence of seasonal forcing, the intricate topology of non-integrable Hamiltonian predator-prey models is shown to exercise profound effects on the dynamics and bifurcation structure of more realistic schemes which do not admit a Hamiltonian formulation. The demonstration of this fact is accomplished by writing the more general models as perturbations of a Hamiltonian limit, ℋ, in which are contained infinite numbers of periodic, quasiperiodic and chaotic motions. From ℋ, there emanates a surface, Γ, of Nejmark-Sacker bifurcations whereby the annual oscillations induced by seasonality are destabilized. Connecting Γ and ℋ is a bridge of resonance horns within which invariant motions of the Hamiltonian case persist. The boundaries of the resonance horns are curves of tangent (saddle-node) bifurcations corresponding to subharmonics of the yearly cycle. Associated with each horn is a rotation number which determines the dominant frequency, or "color", of attractors within the horn. When viewed through the necessarily coarse filter of ecological data acquisition, and regardless of their detailed topology, these attractors are often indistinguishable from multi-annual cycles. Because the tips of the horns line up monotonically along Γ, it further follows that the distribution of observable periods in systems subject to fluctuating parameter values induced, for example, by year-to-year variations in the climate, will often exhibit a discernible central tendency. In short, the bifurcation structure is consistent with the observation of multi-annual cycles in Nature. Fundamentally, this is a consequence of the fact that the bridge between ℋ and Γ is a rainbow bridge. While the present analysis is principally concerned with the two species case (one predator and one prey), Hamiltonian limits are also observed in other ecological contexts: 2n-species (n predators, n prey) systems and periodically-forced three level food chain models. Hamiltonian limits may thus be common in models involving the destruction of one species by another. Given the oft-commented upon structural instability of Hamiltonian systems and the corresponding lack of regard in which they are held as useful caricatures of ecological interactions, the pivotal role assigned here to Hamiltonian limits constitutes a qualitative break with the conventional wisdom.

KW - Bifurcation

KW - Chaos

KW - Cyclic population

KW - Hamiltonian dynamics

KW - Multi-annual cycle

KW - Population dynamics

KW - Predator-prey

KW - Seasonality

KW - Spectral analysis

KW - Subharmonic resonance

UR - http://www.scopus.com/inward/record.url?scp=0033218990&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033218990&partnerID=8YFLogxK

M3 - Article

C2 - 10602912

AN - SCOPUS:0033218990

VL - 39

SP - 439

EP - 469

JO - Journal of Mathematical Biology

JF - Journal of Mathematical Biology

SN - 0303-6812

IS - 5

ER -