The rate of iron sulfide formation in the solar nebula

Dante Lauretta, Daniel T. Kremser, Bruce Fegley

Research output: Contribution to journalArticle

76 Citations (Scopus)

Abstract

The kinetics and mechanism of the reaction H2S(g) + Fe(s) = FeS(s) + H2(g) was studied at temperatures and compositions relevant to the solar nebula. Fe foils were heated at 558-1173 K in H2S/H2 gas mixtures (∼25 to ∼10,000 parts per million by volume (ppmv) H2S) at atmospheric pressure. Optical microscopy and X-ray diffraction show that the microstructures and preferred growth orientations of the Fe sulfide scales vary with temperature and H2S/H2 ratio. Initially, compact, uniformly oriented scales grow on the Fe metal. As sulfidation proceeds, the scales crack and finer grained, randomly oriented crystals grow between the metal and the initial sulfide scale. The composition of the scales varies from Fe0.90S to FeS with temperature and H2S/H2 ratio, in agreement with thermodynamic calculations. The weight gain and thickness change of the samples give nearly identical measures of the reaction progress. Sulfide layers formed in 25-100 ppmv H2S grow linearly with time. Iron sulfides formed in ∼1000 ppmv H2S originally grow linearly with time. Upon reaching a critical thickness growth follows parabolic kinetics. Iron sulfide formation in 10,000 ppmv H2S also follows parabolic kinetics. The linear rate equation for sulfidation of Fe grains (≤20 μm diameter) in the solar nebula is d(FeS)/dt = kfPH2S - kr PH2(cm hour-1). The forward and reverse rate constants are (cm hour-1 atm-1) kf = 5.6(±1.3)exp(-27950(±7280)/RT) and kr = 10.3(±1.0)exp(-92610(±350)/RT), respectively. The activation energies for the forward and reverse reactions are ∼28 kJ mole-1 and ∼93 kJ mole-1, respectively. FeS formation in the solar nebula is rapid (e.g., ∼200 years at 700 K and 10-3 bars total pressure for 20 μm diameter Fe grains) as predicted by simple collision theory models of FeS formation.

Original languageEnglish (US)
Pages (from-to)288-315
Number of pages28
JournalIcarus
Volume122
Issue number2
DOIs
StatePublished - Aug 1996
Externally publishedYes

Fingerprint

solar nebula
iron sulfide
sulfides
iron
sulfide
sulfidation
kinetics
temperature
metal
activation energy
atmospheric pressure
microscopy
microstructure
crack
collision
thermodynamics
metals
X-ray diffraction
gas mixtures
crystal

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this

The rate of iron sulfide formation in the solar nebula. / Lauretta, Dante; Kremser, Daniel T.; Fegley, Bruce.

In: Icarus, Vol. 122, No. 2, 08.1996, p. 288-315.

Research output: Contribution to journalArticle

Lauretta, Dante ; Kremser, Daniel T. ; Fegley, Bruce. / The rate of iron sulfide formation in the solar nebula. In: Icarus. 1996 ; Vol. 122, No. 2. pp. 288-315.
@article{dd8f30939ed04a708999ad94a4b7c1db,
title = "The rate of iron sulfide formation in the solar nebula",
abstract = "The kinetics and mechanism of the reaction H2S(g) + Fe(s) = FeS(s) + H2(g) was studied at temperatures and compositions relevant to the solar nebula. Fe foils were heated at 558-1173 K in H2S/H2 gas mixtures (∼25 to ∼10,000 parts per million by volume (ppmv) H2S) at atmospheric pressure. Optical microscopy and X-ray diffraction show that the microstructures and preferred growth orientations of the Fe sulfide scales vary with temperature and H2S/H2 ratio. Initially, compact, uniformly oriented scales grow on the Fe metal. As sulfidation proceeds, the scales crack and finer grained, randomly oriented crystals grow between the metal and the initial sulfide scale. The composition of the scales varies from Fe0.90S to FeS with temperature and H2S/H2 ratio, in agreement with thermodynamic calculations. The weight gain and thickness change of the samples give nearly identical measures of the reaction progress. Sulfide layers formed in 25-100 ppmv H2S grow linearly with time. Iron sulfides formed in ∼1000 ppmv H2S originally grow linearly with time. Upon reaching a critical thickness growth follows parabolic kinetics. Iron sulfide formation in 10,000 ppmv H2S also follows parabolic kinetics. The linear rate equation for sulfidation of Fe grains (≤20 μm diameter) in the solar nebula is d(FeS)/dt = kfPH2S - kr PH2(cm hour-1). The forward and reverse rate constants are (cm hour-1 atm-1) kf = 5.6(±1.3)exp(-27950(±7280)/RT) and kr = 10.3(±1.0)exp(-92610(±350)/RT), respectively. The activation energies for the forward and reverse reactions are ∼28 kJ mole-1 and ∼93 kJ mole-1, respectively. FeS formation in the solar nebula is rapid (e.g., ∼200 years at 700 K and 10-3 bars total pressure for 20 μm diameter Fe grains) as predicted by simple collision theory models of FeS formation.",
author = "Dante Lauretta and Kremser, {Daniel T.} and Bruce Fegley",
year = "1996",
month = "8",
doi = "10.1006/icar.1996.0126",
language = "English (US)",
volume = "122",
pages = "288--315",
journal = "Icarus",
issn = "0019-1035",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - The rate of iron sulfide formation in the solar nebula

AU - Lauretta, Dante

AU - Kremser, Daniel T.

AU - Fegley, Bruce

PY - 1996/8

Y1 - 1996/8

N2 - The kinetics and mechanism of the reaction H2S(g) + Fe(s) = FeS(s) + H2(g) was studied at temperatures and compositions relevant to the solar nebula. Fe foils were heated at 558-1173 K in H2S/H2 gas mixtures (∼25 to ∼10,000 parts per million by volume (ppmv) H2S) at atmospheric pressure. Optical microscopy and X-ray diffraction show that the microstructures and preferred growth orientations of the Fe sulfide scales vary with temperature and H2S/H2 ratio. Initially, compact, uniformly oriented scales grow on the Fe metal. As sulfidation proceeds, the scales crack and finer grained, randomly oriented crystals grow between the metal and the initial sulfide scale. The composition of the scales varies from Fe0.90S to FeS with temperature and H2S/H2 ratio, in agreement with thermodynamic calculations. The weight gain and thickness change of the samples give nearly identical measures of the reaction progress. Sulfide layers formed in 25-100 ppmv H2S grow linearly with time. Iron sulfides formed in ∼1000 ppmv H2S originally grow linearly with time. Upon reaching a critical thickness growth follows parabolic kinetics. Iron sulfide formation in 10,000 ppmv H2S also follows parabolic kinetics. The linear rate equation for sulfidation of Fe grains (≤20 μm diameter) in the solar nebula is d(FeS)/dt = kfPH2S - kr PH2(cm hour-1). The forward and reverse rate constants are (cm hour-1 atm-1) kf = 5.6(±1.3)exp(-27950(±7280)/RT) and kr = 10.3(±1.0)exp(-92610(±350)/RT), respectively. The activation energies for the forward and reverse reactions are ∼28 kJ mole-1 and ∼93 kJ mole-1, respectively. FeS formation in the solar nebula is rapid (e.g., ∼200 years at 700 K and 10-3 bars total pressure for 20 μm diameter Fe grains) as predicted by simple collision theory models of FeS formation.

AB - The kinetics and mechanism of the reaction H2S(g) + Fe(s) = FeS(s) + H2(g) was studied at temperatures and compositions relevant to the solar nebula. Fe foils were heated at 558-1173 K in H2S/H2 gas mixtures (∼25 to ∼10,000 parts per million by volume (ppmv) H2S) at atmospheric pressure. Optical microscopy and X-ray diffraction show that the microstructures and preferred growth orientations of the Fe sulfide scales vary with temperature and H2S/H2 ratio. Initially, compact, uniformly oriented scales grow on the Fe metal. As sulfidation proceeds, the scales crack and finer grained, randomly oriented crystals grow between the metal and the initial sulfide scale. The composition of the scales varies from Fe0.90S to FeS with temperature and H2S/H2 ratio, in agreement with thermodynamic calculations. The weight gain and thickness change of the samples give nearly identical measures of the reaction progress. Sulfide layers formed in 25-100 ppmv H2S grow linearly with time. Iron sulfides formed in ∼1000 ppmv H2S originally grow linearly with time. Upon reaching a critical thickness growth follows parabolic kinetics. Iron sulfide formation in 10,000 ppmv H2S also follows parabolic kinetics. The linear rate equation for sulfidation of Fe grains (≤20 μm diameter) in the solar nebula is d(FeS)/dt = kfPH2S - kr PH2(cm hour-1). The forward and reverse rate constants are (cm hour-1 atm-1) kf = 5.6(±1.3)exp(-27950(±7280)/RT) and kr = 10.3(±1.0)exp(-92610(±350)/RT), respectively. The activation energies for the forward and reverse reactions are ∼28 kJ mole-1 and ∼93 kJ mole-1, respectively. FeS formation in the solar nebula is rapid (e.g., ∼200 years at 700 K and 10-3 bars total pressure for 20 μm diameter Fe grains) as predicted by simple collision theory models of FeS formation.

UR - http://www.scopus.com/inward/record.url?scp=0030211005&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030211005&partnerID=8YFLogxK

U2 - 10.1006/icar.1996.0126

DO - 10.1006/icar.1996.0126

M3 - Article

AN - SCOPUS:0030211005

VL - 122

SP - 288

EP - 315

JO - Icarus

JF - Icarus

SN - 0019-1035

IS - 2

ER -