The reciprocity conjecture of Khare and Wintenberger

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We prove a strengthening of the "reciprocity conjecture" of Khare and Wintenberger. The input to the original conjecture is an odd prime p, a CM number field F containing the pth roots of unity, and a pair (q1, 12) of primes of the maximal totally real subfield F+ of F that are inert in the cyclotomic Zp-extension F+ /F+. In analogy to a statement about generalized Jacobians of curves, the conjecture asserts the equality of two procyclic subgroups of the Galois group of the maximal pro-p extension ℳ of F + that is unramified outside p and abelian over F+. The first is the intersection with Gal(ℳ/F+ ) of the closed subgroup of Gal(ℳ/F+) generated by the Frobenius elements of q1 and q2. The second is generated by the class of an exact sequence defining the minus part of the p-part of the ray class group of F of conductor.

Original languageEnglish (US)
Pages (from-to)1409-1424
Number of pages16
JournalInternational Mathematics Research Notices
Volume2014
Issue number5
DOIs
StatePublished - Nov 1 2014

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'The reciprocity conjecture of Khare and Wintenberger'. Together they form a unique fingerprint.

Cite this