The role of la antigens and Fc receptor-bearing T-cells in the inhibition of macrophage receptors for cytophilic antibody induced by soluble immune complexes

V. Srinivasa Rao, Jeffrey A Frelinger, Malcolm S. Mitchell

Research output: Contribution to journalArticle

Abstract

Soluble antigen-antibody complexes composed of 3 M KCl-extracted L1210 antigens and alloantibody to L1210 given to C3H mice caused immunosuppression in the mice. This was reflected in part by the inhibition of cytophilic antibody receptors on macrophages which could be used as a measure of the suppression. Thymocytes or splenic T cells from mice treated with immune complexes could adoptively transfer the suppression to normal syngeneic mice. These cells, which we have termed suppressor inducers, were found to be Ia positive: specifically, I-A+, I-J-. Thus, treatment of the inducers with anti-la or anti-I-A antibodies and complement in vitro abrogated their ability to transfer the suppression to normal mice. In contrast treatment with anti-I-J serum and complement had no effect. Through a similar approach, the cooperating (acceptor) T cells were found to be I-A+, I-J-. Pretreatment of mice with anti-Ia or anti-I-A serum before the administration of antigen-antibody complexes prevented the inhibition of macrophages. This was due at least in part to steric hindrance of adjacent Fc receptors on the FcR+ T cells with which the complexes interacted. Early interaction of immune complexes with FcR+ T cells was in fact demonstrated directly by the inability of the complexes to induce suppression when FcR+ T cells were depleted. The thymocytes or splenic T cells from anti-Ia-pretreated mice failed to transfer the suppression to recipient mice. In contrast, treatment with either anti-Ia or anti-I-A after the immune complexes did not abrogate the generation of suppressor inducers. Treatment of normal recipient mice with anti-Ia serum in vivo before they received the suppressor inducer cells did not prevent cooperation between the two types of cells. By the same token, blocking of Ia antigens of the inducers in vitro with anti-Ia serum (without complement) also did not impair the cooperative interaction. These results indicate that antigen-antibody complexes generate I-A-positive, I-J-negative T-suppressor inducer cells from FcR+ naive T cells. These in turn interact with Ia-positive (I-A+ and I-J-) normal thymocytes or spleen T cells. This interaction most likely generates the ultimate suppressor T cells that suppress cytophilic antibody receptors on macrophages in vivo. However, the I-region determined antigens did not appear to be directly involved in the T-T interaction of suppressor inducer and acceptor cells.

Original languageEnglish (US)
Pages (from-to)370-382
Number of pages13
JournalCellular Immunology
Volume74
Issue number2
DOIs
StatePublished - 1982
Externally publishedYes

Fingerprint

Antigen Receptors
Fc Receptors
Antigen-Antibody Complex
Macrophages
T-Lymphocytes
Antibodies
Thymocytes
Helper-Inducer T-Lymphocytes
Serum
Antigens
Isoantibodies
Inbred C3H Mouse
Histocompatibility Antigens Class II
Immunosuppression
Therapeutics
Spleen

ASJC Scopus subject areas

  • Cell Biology
  • Immunology

Cite this

The role of la antigens and Fc receptor-bearing T-cells in the inhibition of macrophage receptors for cytophilic antibody induced by soluble immune complexes. / Rao, V. Srinivasa; Frelinger, Jeffrey A; Mitchell, Malcolm S.

In: Cellular Immunology, Vol. 74, No. 2, 1982, p. 370-382.

Research output: Contribution to journalArticle

@article{834fe815fbf3445cbb26ef8215528471,
title = "The role of la antigens and Fc receptor-bearing T-cells in the inhibition of macrophage receptors for cytophilic antibody induced by soluble immune complexes",
abstract = "Soluble antigen-antibody complexes composed of 3 M KCl-extracted L1210 antigens and alloantibody to L1210 given to C3H mice caused immunosuppression in the mice. This was reflected in part by the inhibition of cytophilic antibody receptors on macrophages which could be used as a measure of the suppression. Thymocytes or splenic T cells from mice treated with immune complexes could adoptively transfer the suppression to normal syngeneic mice. These cells, which we have termed suppressor inducers, were found to be Ia positive: specifically, I-A+, I-J-. Thus, treatment of the inducers with anti-la or anti-I-A antibodies and complement in vitro abrogated their ability to transfer the suppression to normal mice. In contrast treatment with anti-I-J serum and complement had no effect. Through a similar approach, the cooperating (acceptor) T cells were found to be I-A+, I-J-. Pretreatment of mice with anti-Ia or anti-I-A serum before the administration of antigen-antibody complexes prevented the inhibition of macrophages. This was due at least in part to steric hindrance of adjacent Fc receptors on the FcR+ T cells with which the complexes interacted. Early interaction of immune complexes with FcR+ T cells was in fact demonstrated directly by the inability of the complexes to induce suppression when FcR+ T cells were depleted. The thymocytes or splenic T cells from anti-Ia-pretreated mice failed to transfer the suppression to recipient mice. In contrast, treatment with either anti-Ia or anti-I-A after the immune complexes did not abrogate the generation of suppressor inducers. Treatment of normal recipient mice with anti-Ia serum in vivo before they received the suppressor inducer cells did not prevent cooperation between the two types of cells. By the same token, blocking of Ia antigens of the inducers in vitro with anti-Ia serum (without complement) also did not impair the cooperative interaction. These results indicate that antigen-antibody complexes generate I-A-positive, I-J-negative T-suppressor inducer cells from FcR+ naive T cells. These in turn interact with Ia-positive (I-A+ and I-J-) normal thymocytes or spleen T cells. This interaction most likely generates the ultimate suppressor T cells that suppress cytophilic antibody receptors on macrophages in vivo. However, the I-region determined antigens did not appear to be directly involved in the T-T interaction of suppressor inducer and acceptor cells.",
author = "Rao, {V. Srinivasa} and Frelinger, {Jeffrey A} and Mitchell, {Malcolm S.}",
year = "1982",
doi = "10.1016/0008-8749(82)90037-5",
language = "English (US)",
volume = "74",
pages = "370--382",
journal = "Cellular Immunology",
issn = "0008-8749",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - The role of la antigens and Fc receptor-bearing T-cells in the inhibition of macrophage receptors for cytophilic antibody induced by soluble immune complexes

AU - Rao, V. Srinivasa

AU - Frelinger, Jeffrey A

AU - Mitchell, Malcolm S.

PY - 1982

Y1 - 1982

N2 - Soluble antigen-antibody complexes composed of 3 M KCl-extracted L1210 antigens and alloantibody to L1210 given to C3H mice caused immunosuppression in the mice. This was reflected in part by the inhibition of cytophilic antibody receptors on macrophages which could be used as a measure of the suppression. Thymocytes or splenic T cells from mice treated with immune complexes could adoptively transfer the suppression to normal syngeneic mice. These cells, which we have termed suppressor inducers, were found to be Ia positive: specifically, I-A+, I-J-. Thus, treatment of the inducers with anti-la or anti-I-A antibodies and complement in vitro abrogated their ability to transfer the suppression to normal mice. In contrast treatment with anti-I-J serum and complement had no effect. Through a similar approach, the cooperating (acceptor) T cells were found to be I-A+, I-J-. Pretreatment of mice with anti-Ia or anti-I-A serum before the administration of antigen-antibody complexes prevented the inhibition of macrophages. This was due at least in part to steric hindrance of adjacent Fc receptors on the FcR+ T cells with which the complexes interacted. Early interaction of immune complexes with FcR+ T cells was in fact demonstrated directly by the inability of the complexes to induce suppression when FcR+ T cells were depleted. The thymocytes or splenic T cells from anti-Ia-pretreated mice failed to transfer the suppression to recipient mice. In contrast, treatment with either anti-Ia or anti-I-A after the immune complexes did not abrogate the generation of suppressor inducers. Treatment of normal recipient mice with anti-Ia serum in vivo before they received the suppressor inducer cells did not prevent cooperation between the two types of cells. By the same token, blocking of Ia antigens of the inducers in vitro with anti-Ia serum (without complement) also did not impair the cooperative interaction. These results indicate that antigen-antibody complexes generate I-A-positive, I-J-negative T-suppressor inducer cells from FcR+ naive T cells. These in turn interact with Ia-positive (I-A+ and I-J-) normal thymocytes or spleen T cells. This interaction most likely generates the ultimate suppressor T cells that suppress cytophilic antibody receptors on macrophages in vivo. However, the I-region determined antigens did not appear to be directly involved in the T-T interaction of suppressor inducer and acceptor cells.

AB - Soluble antigen-antibody complexes composed of 3 M KCl-extracted L1210 antigens and alloantibody to L1210 given to C3H mice caused immunosuppression in the mice. This was reflected in part by the inhibition of cytophilic antibody receptors on macrophages which could be used as a measure of the suppression. Thymocytes or splenic T cells from mice treated with immune complexes could adoptively transfer the suppression to normal syngeneic mice. These cells, which we have termed suppressor inducers, were found to be Ia positive: specifically, I-A+, I-J-. Thus, treatment of the inducers with anti-la or anti-I-A antibodies and complement in vitro abrogated their ability to transfer the suppression to normal mice. In contrast treatment with anti-I-J serum and complement had no effect. Through a similar approach, the cooperating (acceptor) T cells were found to be I-A+, I-J-. Pretreatment of mice with anti-Ia or anti-I-A serum before the administration of antigen-antibody complexes prevented the inhibition of macrophages. This was due at least in part to steric hindrance of adjacent Fc receptors on the FcR+ T cells with which the complexes interacted. Early interaction of immune complexes with FcR+ T cells was in fact demonstrated directly by the inability of the complexes to induce suppression when FcR+ T cells were depleted. The thymocytes or splenic T cells from anti-Ia-pretreated mice failed to transfer the suppression to recipient mice. In contrast, treatment with either anti-Ia or anti-I-A after the immune complexes did not abrogate the generation of suppressor inducers. Treatment of normal recipient mice with anti-Ia serum in vivo before they received the suppressor inducer cells did not prevent cooperation between the two types of cells. By the same token, blocking of Ia antigens of the inducers in vitro with anti-Ia serum (without complement) also did not impair the cooperative interaction. These results indicate that antigen-antibody complexes generate I-A-positive, I-J-negative T-suppressor inducer cells from FcR+ naive T cells. These in turn interact with Ia-positive (I-A+ and I-J-) normal thymocytes or spleen T cells. This interaction most likely generates the ultimate suppressor T cells that suppress cytophilic antibody receptors on macrophages in vivo. However, the I-region determined antigens did not appear to be directly involved in the T-T interaction of suppressor inducer and acceptor cells.

UR - http://www.scopus.com/inward/record.url?scp=0020353523&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020353523&partnerID=8YFLogxK

U2 - 10.1016/0008-8749(82)90037-5

DO - 10.1016/0008-8749(82)90037-5

M3 - Article

C2 - 6219749

AN - SCOPUS:0020353523

VL - 74

SP - 370

EP - 382

JO - Cellular Immunology

JF - Cellular Immunology

SN - 0008-8749

IS - 2

ER -