The torsion group of a field defined by radicals

Maria Acosta de Orozco, William Yslas Velez

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Let L F be a finite separable extension, L* = L{0}, and T( L* F*) the torsion subgroup of L* F*. When L F is an abelian extension T( L* F*) is explicitly determined. This information is used to study the structure of T( L* F*). In particular, T( F(α)* F*) when am = a ∈ F is explicitly determined.

Original languageEnglish (US)
Pages (from-to)283-294
Number of pages12
JournalJournal of Number Theory
Volume19
Issue number2
DOIs
StatePublished - 1984

Fingerprint

Torsion
Subgroup

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

The torsion group of a field defined by radicals. / de Orozco, Maria Acosta; Velez, William Yslas.

In: Journal of Number Theory, Vol. 19, No. 2, 1984, p. 283-294.

Research output: Contribution to journalArticle

de Orozco, Maria Acosta ; Velez, William Yslas. / The torsion group of a field defined by radicals. In: Journal of Number Theory. 1984 ; Vol. 19, No. 2. pp. 283-294.
@article{915c75eac9604f6a80f6b649405a7bca,
title = "The torsion group of a field defined by radicals",
abstract = "Let L F be a finite separable extension, L* = L{0}, and T( L* F*) the torsion subgroup of L* F*. When L F is an abelian extension T( L* F*) is explicitly determined. This information is used to study the structure of T( L* F*). In particular, T( F(α)* F*) when am = a ∈ F is explicitly determined.",
author = "{de Orozco}, {Maria Acosta} and Velez, {William Yslas}",
year = "1984",
doi = "10.1016/0022-314X(84)90112-4",
language = "English (US)",
volume = "19",
pages = "283--294",
journal = "Journal of Number Theory",
issn = "0022-314X",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - The torsion group of a field defined by radicals

AU - de Orozco, Maria Acosta

AU - Velez, William Yslas

PY - 1984

Y1 - 1984

N2 - Let L F be a finite separable extension, L* = L{0}, and T( L* F*) the torsion subgroup of L* F*. When L F is an abelian extension T( L* F*) is explicitly determined. This information is used to study the structure of T( L* F*). In particular, T( F(α)* F*) when am = a ∈ F is explicitly determined.

AB - Let L F be a finite separable extension, L* = L{0}, and T( L* F*) the torsion subgroup of L* F*. When L F is an abelian extension T( L* F*) is explicitly determined. This information is used to study the structure of T( L* F*). In particular, T( F(α)* F*) when am = a ∈ F is explicitly determined.

UR - http://www.scopus.com/inward/record.url?scp=48549110812&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=48549110812&partnerID=8YFLogxK

U2 - 10.1016/0022-314X(84)90112-4

DO - 10.1016/0022-314X(84)90112-4

M3 - Article

AN - SCOPUS:48549110812

VL - 19

SP - 283

EP - 294

JO - Journal of Number Theory

JF - Journal of Number Theory

SN - 0022-314X

IS - 2

ER -