Theory of resonances in four-wave mixing resulting from velocity-changing collisions

M. Gorlicki, P. R. Berman, G. Khitrova

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

A theory of four-wave mixing including effects of velocity-changing collisions is presented. Three fields with frequencies and + are incident on a vapor of two-level atoms having upper state b and lower state a. Two of the fields are counterpropagating and the third (of frequency +) makes a small angle with one of the others. The frequency is a nearly resonant (inside the Doppler width) with the a-b transition frequency. The phase-conjugate signal emitted at frequency - is calculated as a function of . Using a simple collision model in which collisions are phase interrupting in their effect on atomic coherence and velocity-changing in their effect on level populations, we discuss the conditions under which resonances characterized by the upper or lower radiative and collision rates can be observed. Assuming that the total (a+b) state population is conserved in the absence of collisions, it is shown that velocity-changing collisions can open the system and lead to a resonance characterized by the lower-state width (convoluted with the residual Doppler width). With increasing pressure, the width of this induced resonance structure decreases monotonically. For sufficiently high pressure, the collisional redistribution of velocity classes is completethe system recloses and the narrow resonance disappears. The interplay of the collision-induced opening, line narrowing, and reclosing of the system is discussed, as is the relationship of these narrow resonances to the so-called pressure-induced extra resonances of Bloembergen and co-workers [Indian J. Pure Appl. Phys. 16, 151 (1978); Phys. Rev. Lett. 46, 111 (1981)].

Original languageEnglish (US)
Pages (from-to)4340-4350
Number of pages11
JournalPhysical Review A
Volume37
Issue number11
DOIs
StatePublished - Jan 1 1988

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Theory of resonances in four-wave mixing resulting from velocity-changing collisions'. Together they form a unique fingerprint.

Cite this