Thermally induced DNA·RNA hybrid to G-quadruplex transitions: Possible implications for telomere synthesis by telomerase

Miguel Salazar, Brian D. Thompson, Sean M. Kerwin, Laurence H. Hurley

Research output: Contribution to journalArticle

70 Scopus citations

Abstract

Telomerase is a specialized reverse transcriptase that contains its own RNA template for synthesis of telomeric DNA [Greider, C. W., and Blackburn, E. H. (1989) Nature 337, 331-337; Shippen-Lentz, D., and Blackburn, E. H. (1990) Science 247, 546-552]. The activity of this ribonucleoprotein enzyme has been associated with cancer cells [Kim et al. (1994) Science 266, 2011- 2015] and is thus a potential target for anticancer chemotherapy. Telomeric DNA·RNA hybrids are important intermediates in telomerase function and form after extension of the growing telomere on the telomerase RNA template. Translocation is a critical step in telomerase function and consists of unwinding of the telomeric DNA·telomerase RNA hybrid followed by repositioning of the 3'-end of the extended telomere. A central question in telomerase function is how translocation of the extended telomere occurs in the absence of ATP or GTP. It has been hypothesized that unwinding of the telomeric hybrid may be facilitated by the formation of stable hairpins or G-quadruplexes by the telomere product (i.e., a hybrid to G-quadruplex transition) and that this may provide at least part of the driving force for translocation [Shippen-Lentz and Blackburn. 1990; Zahler et al. (1991) Nature 350, 718-720]. However, so far there has been no effort aimed at examining the possibility that a hybrid/G-quadruplex equilibrium can occur and to what extent this equilibrium depends on buffer and concentration conditions. Examination of these transitions may provide insight into telomerase function and may also provide clues for the development of anti- telomerase agents. Using a model system consisting of the DNA·RNA hybrid d(GGTTAAGGGTTAG)·r(cuaacccuaacc), we present evidence that a thermally induced transition of telomeric DNA·RNA hybrid to G-quadruplex can occur under certain conditions. These results provide support for the hypothesis that G-quadruplex formation by the telomere product may in fact regulate telomerase function at the translocation step (Zahler et al., 1991) and suggest an Achilles' heel for indirectly targeting telomerase. Thus, on the basis of the insight gained from the present studies and the result of Zahler et al. (1991), we propose that ligands that selectively bind or cleave G-quadruplex structures may modulate telomerase processivity.

Original languageEnglish (US)
Pages (from-to)16110-16115
Number of pages6
JournalBiochemistry
Volume35
Issue number50
DOIs
StatePublished - Dec 17 1996

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Thermally induced DNA·RNA hybrid to G-quadruplex transitions: Possible implications for telomere synthesis by telomerase'. Together they form a unique fingerprint.

  • Cite this