Thermoelectric properties and efficiency measurements under large temperature differences

A. Muto, D. Kraemer, Q. Hao, Z. F. Ren, G. Chen

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

The maximum efficiency of a thermoelectric generator is determined by the material's dimensionless figure of merit ZT. Real thermoelectric material properties are highly temperature dependent and are often measured individually using multiple measurement tools on different samples. As a result, reported ZT values have large uncertainties. In this work we present an experimental technique that eliminates some of these uncertainties. We measure the Seebeck coefficient, electrical conductivity, and thermal conductivity of a single element or leg, as well as the conversion efficiency, under a large temperature difference of 2-160 °C. The advantages of this technique include (1) the thermoelectric leg is mounted only once and all measurements are in the same direction and (2) the measured properties are corroborated by efficiency measurements. The directly measured power and efficiency are compared to the values calculated from the measured properties and agree within 0.4% and 2%, respectively. The realistic testing conditions of this technique make it ideal for material characterization prior to implementation in a real thermoelectric generator.

Original languageEnglish (US)
Article number093901
JournalReview of Scientific Instruments
Volume80
Issue number9
DOIs
StatePublished - Oct 12 2009
Externally publishedYes

ASJC Scopus subject areas

  • Instrumentation

Fingerprint Dive into the research topics of 'Thermoelectric properties and efficiency measurements under large temperature differences'. Together they form a unique fingerprint.

  • Cite this