Time course of quartz and TiO2 particle-induced pulmonary inflammation and neutrophil apoptotic responses in rats

Donna Zhang, Mark A. Hartsky, David B. Warheit

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Apoptosis, or programmed cell death, has been reported to play an important role in the resolution of pulmonary inflammation. This study was undertaken to investigate the role of apoptosis in resolving particle-induced lung inflammatory responses in exposed rats, using a dose-response/time course experimental design. Groups of rats were exposed via intratracheal instillation to 0, 0.5, 1, 5, 10, or 50 mg/kg body weight of quartz (i.e., crystalline silica) particles or to 0, 0.5, 1, 5, 10, 20, or 50 mg/kg of pigment-grade titanium dioxide (TiO2) particles and evaluated for lung inflammation parameters and evidence of apoptosis of inflammatory cells at 24, 48, 72, or 168 hours post exposure. At each post exposure evaluation period, bronchoalveolar lavage (BAL)-recovered cells from control and particle-exposed rats were assessed for apoptosis using 4 different techniques. The results in silica-exposed rats demonstrated a significant dose-related increase in inflammation concomitant with apoptosis of pulmonary inflammatory cells at 24 to 48 hours post exposure. At later postexposure time points, both the silica-induced inflammatory responses and apoptotic levels of inflammatory cells at higher doses (i.e., ≥ 5 mg/kg) were reduced but persisted through 1 week. TUNEL (TdT-mediated dUTP nick end-labeling) assay studies confirmed that the vast majority of apoptotic cells were neutrophils. In contrast, titanium dioxide particle exposures produced transient pulmonary inflammation but only small measurable and nonsignificant apoptotic responses at higher exposure concentrations. These results suggest that the sustained lung inflammatory response in rats exposed to ≥ 5 mg/kg silica may be related to the ineffectiveness of the normal apoptotic mechanisms associated with resolution of inflammation. However, because quartz particles are known to be cytotoxic to alveolar macrophages and other lung cells, normal apoptotic mechanisms may have limited utility for resolving particle-induced inflammation, particularly, because silica may not be representative of other particle-types. Alternatively, it seems unlikely that apoptosis served to promote silica-induced lung inflammatory responses because the initial increase of apoptosis in inflammatory cells was subsequently correlated with a reduction of the pulmonary inflammatory response in silica-exposed rats. The findings from this in vivo study demonstrate that the neutrophil, and not the alveolar macrophage, is the primary inflammatory cell-type that undergoes apoptosis in response to particles. Furthermore, at doses causing similar degrees of inflammation at 24 hours post exposure, the magnitude of apoptosis induced by silica is significantly larger than that induced by TiO2, indicating that there are potency differences in lung inflammation as well as apoptotic responses among different particle-types.

Original languageEnglish (US)
Pages (from-to)641-670
Number of pages30
JournalExperimental Lung Research
Volume28
Issue number8
DOIs
StatePublished - Dec 2002
Externally publishedYes

Fingerprint

Quartz
Silicon Dioxide
Rats
Pneumonia
Neutrophils
Apoptosis
Lung
Inflammation
Alveolar Macrophages
Bronchoalveolar Lavage
Cell death
Reaction Time
Pigments
Design of experiments
Labeling
Cell Death
Research Design
Assays
Body Weight
Cells

Keywords

  • Apoptosis
  • Lung inflammation
  • Neutrophil apoptosis
  • Quartz particles
  • Resolution of inflammation
  • Silica particles
  • Titanium dioxide particles

ASJC Scopus subject areas

  • Pulmonary and Respiratory Medicine

Cite this

Time course of quartz and TiO2 particle-induced pulmonary inflammation and neutrophil apoptotic responses in rats. / Zhang, Donna; Hartsky, Mark A.; Warheit, David B.

In: Experimental Lung Research, Vol. 28, No. 8, 12.2002, p. 641-670.

Research output: Contribution to journalArticle

@article{a66a585f0c374755b75172e986694f18,
title = "Time course of quartz and TiO2 particle-induced pulmonary inflammation and neutrophil apoptotic responses in rats",
abstract = "Apoptosis, or programmed cell death, has been reported to play an important role in the resolution of pulmonary inflammation. This study was undertaken to investigate the role of apoptosis in resolving particle-induced lung inflammatory responses in exposed rats, using a dose-response/time course experimental design. Groups of rats were exposed via intratracheal instillation to 0, 0.5, 1, 5, 10, or 50 mg/kg body weight of quartz (i.e., crystalline silica) particles or to 0, 0.5, 1, 5, 10, 20, or 50 mg/kg of pigment-grade titanium dioxide (TiO2) particles and evaluated for lung inflammation parameters and evidence of apoptosis of inflammatory cells at 24, 48, 72, or 168 hours post exposure. At each post exposure evaluation period, bronchoalveolar lavage (BAL)-recovered cells from control and particle-exposed rats were assessed for apoptosis using 4 different techniques. The results in silica-exposed rats demonstrated a significant dose-related increase in inflammation concomitant with apoptosis of pulmonary inflammatory cells at 24 to 48 hours post exposure. At later postexposure time points, both the silica-induced inflammatory responses and apoptotic levels of inflammatory cells at higher doses (i.e., ≥ 5 mg/kg) were reduced but persisted through 1 week. TUNEL (TdT-mediated dUTP nick end-labeling) assay studies confirmed that the vast majority of apoptotic cells were neutrophils. In contrast, titanium dioxide particle exposures produced transient pulmonary inflammation but only small measurable and nonsignificant apoptotic responses at higher exposure concentrations. These results suggest that the sustained lung inflammatory response in rats exposed to ≥ 5 mg/kg silica may be related to the ineffectiveness of the normal apoptotic mechanisms associated with resolution of inflammation. However, because quartz particles are known to be cytotoxic to alveolar macrophages and other lung cells, normal apoptotic mechanisms may have limited utility for resolving particle-induced inflammation, particularly, because silica may not be representative of other particle-types. Alternatively, it seems unlikely that apoptosis served to promote silica-induced lung inflammatory responses because the initial increase of apoptosis in inflammatory cells was subsequently correlated with a reduction of the pulmonary inflammatory response in silica-exposed rats. The findings from this in vivo study demonstrate that the neutrophil, and not the alveolar macrophage, is the primary inflammatory cell-type that undergoes apoptosis in response to particles. Furthermore, at doses causing similar degrees of inflammation at 24 hours post exposure, the magnitude of apoptosis induced by silica is significantly larger than that induced by TiO2, indicating that there are potency differences in lung inflammation as well as apoptotic responses among different particle-types.",
keywords = "Apoptosis, Lung inflammation, Neutrophil apoptosis, Quartz particles, Resolution of inflammation, Silica particles, Titanium dioxide particles",
author = "Donna Zhang and Hartsky, {Mark A.} and Warheit, {David B.}",
year = "2002",
month = "12",
doi = "10.1080/01902140260426742",
language = "English (US)",
volume = "28",
pages = "641--670",
journal = "Experimental Lung Research",
issn = "0190-2148",
publisher = "Informa Healthcare",
number = "8",

}

TY - JOUR

T1 - Time course of quartz and TiO2 particle-induced pulmonary inflammation and neutrophil apoptotic responses in rats

AU - Zhang, Donna

AU - Hartsky, Mark A.

AU - Warheit, David B.

PY - 2002/12

Y1 - 2002/12

N2 - Apoptosis, or programmed cell death, has been reported to play an important role in the resolution of pulmonary inflammation. This study was undertaken to investigate the role of apoptosis in resolving particle-induced lung inflammatory responses in exposed rats, using a dose-response/time course experimental design. Groups of rats were exposed via intratracheal instillation to 0, 0.5, 1, 5, 10, or 50 mg/kg body weight of quartz (i.e., crystalline silica) particles or to 0, 0.5, 1, 5, 10, 20, or 50 mg/kg of pigment-grade titanium dioxide (TiO2) particles and evaluated for lung inflammation parameters and evidence of apoptosis of inflammatory cells at 24, 48, 72, or 168 hours post exposure. At each post exposure evaluation period, bronchoalveolar lavage (BAL)-recovered cells from control and particle-exposed rats were assessed for apoptosis using 4 different techniques. The results in silica-exposed rats demonstrated a significant dose-related increase in inflammation concomitant with apoptosis of pulmonary inflammatory cells at 24 to 48 hours post exposure. At later postexposure time points, both the silica-induced inflammatory responses and apoptotic levels of inflammatory cells at higher doses (i.e., ≥ 5 mg/kg) were reduced but persisted through 1 week. TUNEL (TdT-mediated dUTP nick end-labeling) assay studies confirmed that the vast majority of apoptotic cells were neutrophils. In contrast, titanium dioxide particle exposures produced transient pulmonary inflammation but only small measurable and nonsignificant apoptotic responses at higher exposure concentrations. These results suggest that the sustained lung inflammatory response in rats exposed to ≥ 5 mg/kg silica may be related to the ineffectiveness of the normal apoptotic mechanisms associated with resolution of inflammation. However, because quartz particles are known to be cytotoxic to alveolar macrophages and other lung cells, normal apoptotic mechanisms may have limited utility for resolving particle-induced inflammation, particularly, because silica may not be representative of other particle-types. Alternatively, it seems unlikely that apoptosis served to promote silica-induced lung inflammatory responses because the initial increase of apoptosis in inflammatory cells was subsequently correlated with a reduction of the pulmonary inflammatory response in silica-exposed rats. The findings from this in vivo study demonstrate that the neutrophil, and not the alveolar macrophage, is the primary inflammatory cell-type that undergoes apoptosis in response to particles. Furthermore, at doses causing similar degrees of inflammation at 24 hours post exposure, the magnitude of apoptosis induced by silica is significantly larger than that induced by TiO2, indicating that there are potency differences in lung inflammation as well as apoptotic responses among different particle-types.

AB - Apoptosis, or programmed cell death, has been reported to play an important role in the resolution of pulmonary inflammation. This study was undertaken to investigate the role of apoptosis in resolving particle-induced lung inflammatory responses in exposed rats, using a dose-response/time course experimental design. Groups of rats were exposed via intratracheal instillation to 0, 0.5, 1, 5, 10, or 50 mg/kg body weight of quartz (i.e., crystalline silica) particles or to 0, 0.5, 1, 5, 10, 20, or 50 mg/kg of pigment-grade titanium dioxide (TiO2) particles and evaluated for lung inflammation parameters and evidence of apoptosis of inflammatory cells at 24, 48, 72, or 168 hours post exposure. At each post exposure evaluation period, bronchoalveolar lavage (BAL)-recovered cells from control and particle-exposed rats were assessed for apoptosis using 4 different techniques. The results in silica-exposed rats demonstrated a significant dose-related increase in inflammation concomitant with apoptosis of pulmonary inflammatory cells at 24 to 48 hours post exposure. At later postexposure time points, both the silica-induced inflammatory responses and apoptotic levels of inflammatory cells at higher doses (i.e., ≥ 5 mg/kg) were reduced but persisted through 1 week. TUNEL (TdT-mediated dUTP nick end-labeling) assay studies confirmed that the vast majority of apoptotic cells were neutrophils. In contrast, titanium dioxide particle exposures produced transient pulmonary inflammation but only small measurable and nonsignificant apoptotic responses at higher exposure concentrations. These results suggest that the sustained lung inflammatory response in rats exposed to ≥ 5 mg/kg silica may be related to the ineffectiveness of the normal apoptotic mechanisms associated with resolution of inflammation. However, because quartz particles are known to be cytotoxic to alveolar macrophages and other lung cells, normal apoptotic mechanisms may have limited utility for resolving particle-induced inflammation, particularly, because silica may not be representative of other particle-types. Alternatively, it seems unlikely that apoptosis served to promote silica-induced lung inflammatory responses because the initial increase of apoptosis in inflammatory cells was subsequently correlated with a reduction of the pulmonary inflammatory response in silica-exposed rats. The findings from this in vivo study demonstrate that the neutrophil, and not the alveolar macrophage, is the primary inflammatory cell-type that undergoes apoptosis in response to particles. Furthermore, at doses causing similar degrees of inflammation at 24 hours post exposure, the magnitude of apoptosis induced by silica is significantly larger than that induced by TiO2, indicating that there are potency differences in lung inflammation as well as apoptotic responses among different particle-types.

KW - Apoptosis

KW - Lung inflammation

KW - Neutrophil apoptosis

KW - Quartz particles

KW - Resolution of inflammation

KW - Silica particles

KW - Titanium dioxide particles

UR - http://www.scopus.com/inward/record.url?scp=0036892075&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036892075&partnerID=8YFLogxK

U2 - 10.1080/01902140260426742

DO - 10.1080/01902140260426742

M3 - Article

C2 - 12490038

AN - SCOPUS:0036892075

VL - 28

SP - 641

EP - 670

JO - Experimental Lung Research

JF - Experimental Lung Research

SN - 0190-2148

IS - 8

ER -