Time to branch out? Application of hierarchical survival models in plant phenology

Sarah C. Elmendorf, Theresa M Crimmins, Katharine L. Gerst, Jake F. Weltzin

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

The sensitivity of phenology to environmental drivers can vary across geography and species. As such, models developed to predict phenology are typically site- or taxon-specific. Generation of site- and taxon-specific models is limited by the intensive in-situ phenological monitoring effort required to generate sufficient data to parameterize each model. Where in-situ phenological observations exist, the data are often subject to analytical issues due to the limited duration of any individual monitoring program, spotty site- and species- level coverage, lack of standardized methodology, and infrequent or variable census intervals. Together, these characteristics constrain our ability to make phenological inferences outside of select sites and taxa where long-duration, intensive monitoring has occurred. In this study, we leveraged two national, standardized phenology datasets to develop a multi-species and multi-site state-space survival model of the onset of deciduous tree and shrub spring (leaf out) and fall (leaf-color) events across temperate ecoregions of the United States. We used data from two national-scale phenological databases, a 9-year, broadly distributed dataset from the USA National Phenology Network and a 4-year dataset from the National Ecological Observatory Network, to quantify regional and interspecific variation in sensitivity to environmental drivers for both spring and fall leaf phenophases. Spring leaf out was generally promoted by longer days, spring growing degree day accumulation, overwinter chilling, and was suppressed by frost events, whereas fall leaf color was promoted by shorter days and cold accumulation. The sensitivity to most environmental drivers tended to be more variable among species than among the regions as defined here (EPA ecoregions of North America, excluding desert and tropical areas). The results of this study lay the groundwork for incorporating the growing collection of phenological observations into a generalized framework for predicting the transition states for any species, in any location.

Original languageEnglish (US)
Article number107694
JournalAgricultural and Forest Meteorology
Volume279
DOIs
StatePublished - Dec 15 2019

Keywords

  • Citizen science
  • Day length
  • NEON
  • Phenology
  • Temperature
  • USA-NPN

ASJC Scopus subject areas

  • Forestry
  • Global and Planetary Change
  • Agronomy and Crop Science
  • Atmospheric Science

Fingerprint Dive into the research topics of 'Time to branch out? Application of hierarchical survival models in plant phenology'. Together they form a unique fingerprint.

  • Cite this