Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells

Kai Lin Ou, Delvin Tadytin, K. Xerxes Steirer, Diogenes Placencia, Mike Nguyen, Paul Lee, Neal R Armstrong

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

We demonstrate the use of chemical vapor deposition (CVD) to create unique thin (12-36 nm) and conformal TiO2 interlayers on indium-tin oxide (ITO) electrodes, for use as electron collection contacts in inverted bulk heterojunction P3HT/PC61BM organic photovoltaics (OPVs). Optimized CVD formation of these oxide films is inherently scalable to large areas, and may be a viable non-contact alternative to electron-selective interlayer formation. Oxide-based electron-selective interlayers, such as TiO2, need to be thin, conformal and sufficiently electronically conducting films without sacrificing electron harvesting selectivity. Using volatile titanium-tetraisopropoxide (TTIP) precursors in a flowing N2 gas stream, the CVD process provides nanometer control of film thickness to produce 12-36 nm thickness device-quality films. The best performing CVD films, processed at substrate temperatures of ca. 210°C, characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were found to be amorphous but stoichiometric TiO2. Solution electrochemistries (voltammetry) of probe molecules were shown to be easily accessible indicators of film porosity and are predictive for electron harvesting selectivity (and hole-blocking) in an inverted configuration OPV platform. Small molecules whose redox potentials placed them energetically above the conduction band edge energy (ECB) were reduced/oxidized at nearly the same rates as for bare ITO. Probe molecules whose redox potentials place them energetically within the band gap region, below ECB, show almost complete blocking of their oxidation/reduction processes, for optimized conformal (and nonporous) TiO 2 films. In addition, background oxidation current densities for solution probe molecules correlate inversely with the shunt resistance (R P) measured in OPVs. OPVs with the configuration: ITO/CVD-TiO 2/P3HT:PC61BM/MoO3/Ag, using TiO2 films of 12, 24 and 36 nm, were evaluated for short-circuit photocurrent (JSC), open-circuit photopotential (VOC), and fill-factor (FF), versus bare ITO. OPVs using amorphous, conformal 24 nm TiO2 interlayers showed the highest fill factors, lowest R S, highest RP and power conversion efficiencies of ca. 3.7%.

Original languageEnglish (US)
Pages (from-to)6794-6803
Number of pages10
JournalJournal of Materials Chemistry A
Volume1
Issue number23
DOIs
StatePublished - Jun 21 2013

Fingerprint

Titanium dioxide
Chemical vapor deposition
Tin oxides
Indium
Electrons
Molecules
Conductive films
Electrochemistry
Voltammetry
Conduction bands
Photocurrents
Volatile organic compounds
Short circuit currents
Oxides
Conversion efficiency
Oxide films
Film thickness
Heterojunctions
Energy gap
Current density

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Cite this

Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells. / Ou, Kai Lin; Tadytin, Delvin; Xerxes Steirer, K.; Placencia, Diogenes; Nguyen, Mike; Lee, Paul; Armstrong, Neal R.

In: Journal of Materials Chemistry A, Vol. 1, No. 23, 21.06.2013, p. 6794-6803.

Research output: Contribution to journalArticle

Ou, Kai Lin ; Tadytin, Delvin ; Xerxes Steirer, K. ; Placencia, Diogenes ; Nguyen, Mike ; Lee, Paul ; Armstrong, Neal R. / Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells. In: Journal of Materials Chemistry A. 2013 ; Vol. 1, No. 23. pp. 6794-6803.
@article{6e31a611301544d5af3ec4d72179b4f1,
title = "Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells",
abstract = "We demonstrate the use of chemical vapor deposition (CVD) to create unique thin (12-36 nm) and conformal TiO2 interlayers on indium-tin oxide (ITO) electrodes, for use as electron collection contacts in inverted bulk heterojunction P3HT/PC61BM organic photovoltaics (OPVs). Optimized CVD formation of these oxide films is inherently scalable to large areas, and may be a viable non-contact alternative to electron-selective interlayer formation. Oxide-based electron-selective interlayers, such as TiO2, need to be thin, conformal and sufficiently electronically conducting films without sacrificing electron harvesting selectivity. Using volatile titanium-tetraisopropoxide (TTIP) precursors in a flowing N2 gas stream, the CVD process provides nanometer control of film thickness to produce 12-36 nm thickness device-quality films. The best performing CVD films, processed at substrate temperatures of ca. 210°C, characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were found to be amorphous but stoichiometric TiO2. Solution electrochemistries (voltammetry) of probe molecules were shown to be easily accessible indicators of film porosity and are predictive for electron harvesting selectivity (and hole-blocking) in an inverted configuration OPV platform. Small molecules whose redox potentials placed them energetically above the conduction band edge energy (ECB) were reduced/oxidized at nearly the same rates as for bare ITO. Probe molecules whose redox potentials place them energetically within the band gap region, below ECB, show almost complete blocking of their oxidation/reduction processes, for optimized conformal (and nonporous) TiO 2 films. In addition, background oxidation current densities for solution probe molecules correlate inversely with the shunt resistance (R P) measured in OPVs. OPVs with the configuration: ITO/CVD-TiO 2/P3HT:PC61BM/MoO3/Ag, using TiO2 films of 12, 24 and 36 nm, were evaluated for short-circuit photocurrent (JSC), open-circuit photopotential (VOC), and fill-factor (FF), versus bare ITO. OPVs using amorphous, conformal 24 nm TiO2 interlayers showed the highest fill factors, lowest R S, highest RP and power conversion efficiencies of ca. 3.7{\%}.",
author = "Ou, {Kai Lin} and Delvin Tadytin and {Xerxes Steirer}, K. and Diogenes Placencia and Mike Nguyen and Paul Lee and Armstrong, {Neal R}",
year = "2013",
month = "6",
day = "21",
doi = "10.1039/c3ta10894e",
language = "English (US)",
volume = "1",
pages = "6794--6803",
journal = "Journal of Materials Chemistry A",
issn = "2050-7488",
publisher = "Royal Society of Chemistry",
number = "23",

}

TY - JOUR

T1 - Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells

AU - Ou, Kai Lin

AU - Tadytin, Delvin

AU - Xerxes Steirer, K.

AU - Placencia, Diogenes

AU - Nguyen, Mike

AU - Lee, Paul

AU - Armstrong, Neal R

PY - 2013/6/21

Y1 - 2013/6/21

N2 - We demonstrate the use of chemical vapor deposition (CVD) to create unique thin (12-36 nm) and conformal TiO2 interlayers on indium-tin oxide (ITO) electrodes, for use as electron collection contacts in inverted bulk heterojunction P3HT/PC61BM organic photovoltaics (OPVs). Optimized CVD formation of these oxide films is inherently scalable to large areas, and may be a viable non-contact alternative to electron-selective interlayer formation. Oxide-based electron-selective interlayers, such as TiO2, need to be thin, conformal and sufficiently electronically conducting films without sacrificing electron harvesting selectivity. Using volatile titanium-tetraisopropoxide (TTIP) precursors in a flowing N2 gas stream, the CVD process provides nanometer control of film thickness to produce 12-36 nm thickness device-quality films. The best performing CVD films, processed at substrate temperatures of ca. 210°C, characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were found to be amorphous but stoichiometric TiO2. Solution electrochemistries (voltammetry) of probe molecules were shown to be easily accessible indicators of film porosity and are predictive for electron harvesting selectivity (and hole-blocking) in an inverted configuration OPV platform. Small molecules whose redox potentials placed them energetically above the conduction band edge energy (ECB) were reduced/oxidized at nearly the same rates as for bare ITO. Probe molecules whose redox potentials place them energetically within the band gap region, below ECB, show almost complete blocking of their oxidation/reduction processes, for optimized conformal (and nonporous) TiO 2 films. In addition, background oxidation current densities for solution probe molecules correlate inversely with the shunt resistance (R P) measured in OPVs. OPVs with the configuration: ITO/CVD-TiO 2/P3HT:PC61BM/MoO3/Ag, using TiO2 films of 12, 24 and 36 nm, were evaluated for short-circuit photocurrent (JSC), open-circuit photopotential (VOC), and fill-factor (FF), versus bare ITO. OPVs using amorphous, conformal 24 nm TiO2 interlayers showed the highest fill factors, lowest R S, highest RP and power conversion efficiencies of ca. 3.7%.

AB - We demonstrate the use of chemical vapor deposition (CVD) to create unique thin (12-36 nm) and conformal TiO2 interlayers on indium-tin oxide (ITO) electrodes, for use as electron collection contacts in inverted bulk heterojunction P3HT/PC61BM organic photovoltaics (OPVs). Optimized CVD formation of these oxide films is inherently scalable to large areas, and may be a viable non-contact alternative to electron-selective interlayer formation. Oxide-based electron-selective interlayers, such as TiO2, need to be thin, conformal and sufficiently electronically conducting films without sacrificing electron harvesting selectivity. Using volatile titanium-tetraisopropoxide (TTIP) precursors in a flowing N2 gas stream, the CVD process provides nanometer control of film thickness to produce 12-36 nm thickness device-quality films. The best performing CVD films, processed at substrate temperatures of ca. 210°C, characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were found to be amorphous but stoichiometric TiO2. Solution electrochemistries (voltammetry) of probe molecules were shown to be easily accessible indicators of film porosity and are predictive for electron harvesting selectivity (and hole-blocking) in an inverted configuration OPV platform. Small molecules whose redox potentials placed them energetically above the conduction band edge energy (ECB) were reduced/oxidized at nearly the same rates as for bare ITO. Probe molecules whose redox potentials place them energetically within the band gap region, below ECB, show almost complete blocking of their oxidation/reduction processes, for optimized conformal (and nonporous) TiO 2 films. In addition, background oxidation current densities for solution probe molecules correlate inversely with the shunt resistance (R P) measured in OPVs. OPVs with the configuration: ITO/CVD-TiO 2/P3HT:PC61BM/MoO3/Ag, using TiO2 films of 12, 24 and 36 nm, were evaluated for short-circuit photocurrent (JSC), open-circuit photopotential (VOC), and fill-factor (FF), versus bare ITO. OPVs using amorphous, conformal 24 nm TiO2 interlayers showed the highest fill factors, lowest R S, highest RP and power conversion efficiencies of ca. 3.7%.

UR - http://www.scopus.com/inward/record.url?scp=84879987402&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879987402&partnerID=8YFLogxK

U2 - 10.1039/c3ta10894e

DO - 10.1039/c3ta10894e

M3 - Article

AN - SCOPUS:84879987402

VL - 1

SP - 6794

EP - 6803

JO - Journal of Materials Chemistry A

JF - Journal of Materials Chemistry A

SN - 2050-7488

IS - 23

ER -