Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia

Joyce Schroeder, David C. Lee

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Transforming growth factor-alpha (TGFα)4 and/or the EGF receptor (EGFR) are frequently overexpressed by human and rodent breast tumors, as well as tumor-derived cell lines. Additionally, various observations suggest a role for TGFα and the EGFR signaling system in normal mouse mammary gland development. Recently, several laboratories have established TGFα transgenic mice with which to study the role of this growth factor in normal and neoplastic mammary biology. Examination of these mice revealed that overexpression of TGFα has profound consequences for this tissue. Most strikingly, transgenic mice expressing TGFα under the control of tissue-specific and nonspecific promoters stochastically developed focal mammary tumors with an incidence and latency that was markedly affected by pregnancy. Most TGFα-induced tumors were well-differentiated adenomas/adenocarcinomas, although some were undifferentiated and locally invasive. Distant metastases were only occasionally observed. Administration of the genotoxic carcinogen, 7,12-dimethylbenzanthracene (DMBA), dramatically accelerated mammary tumorigenesis induced by the TGFα transgene, raising the possibility that TGFα acts as a promoter in this tissue. Mice harboring dual transgenes encoding TGFα and either wild-type ERBB2 or c-myc displayed markedly accelerated tumorigenesis compared to mice carrying any of the single transgenes alone, indicative of potent cooperativity. Moreover, tumorigenesis in the bitransgenic mice was less dependent on pregnancy, and tumors were generally more malignant in appearance. Finally, TGFα also affected mammary gland dynamics. TGFα transgenic mice consistently displayed precocious alveolar development, were variably impaired with respect to lactation, and showed markedly reduced postlactional involution. As a result, the glands of multiparous females accumulated hyperplastic lesions that generally resembled milk-producing alveoli. Limited data support the hypothesis that these lesions were precursors to TGFα-induced tumors. In summary, these various findings underscore the potential importance of TGFα for cellular differentiation and transformation in the mammary gland. They also establish TGFα transgenic mice as a powerful model with which to study the role of EGFR signaling molecules in this dynamic tissue.

Original languageEnglish (US)
Pages (from-to)119-129
Number of pages11
JournalJournal of Mammary Gland Biology and Neoplasia
Volume2
Issue number2
StatePublished - 1997
Externally publishedYes

Fingerprint

Transforming Growth Factor alpha
Human Mammary Glands
Epidermal Growth Factor Receptor
Transgenic Mice
Neoplasms
Transgenes
Carcinogenesis
Breast
Breast Neoplasms
Pregnancy
9,10-Dimethyl-1,2-benzanthracene
Tumor Cell Line
Lactation
Carcinogens
Adenoma

Keywords

  • EGFR
  • Mammary gland
  • Neoplasia
  • TGFα
  • Transgenic mice

ASJC Scopus subject areas

  • Cancer Research

Cite this

Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia. / Schroeder, Joyce; Lee, David C.

In: Journal of Mammary Gland Biology and Neoplasia, Vol. 2, No. 2, 1997, p. 119-129.

Research output: Contribution to journalArticle

@article{78fd1fd9f46248a9ae8c541293761c13,
title = "Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia",
abstract = "Transforming growth factor-alpha (TGFα)4 and/or the EGF receptor (EGFR) are frequently overexpressed by human and rodent breast tumors, as well as tumor-derived cell lines. Additionally, various observations suggest a role for TGFα and the EGFR signaling system in normal mouse mammary gland development. Recently, several laboratories have established TGFα transgenic mice with which to study the role of this growth factor in normal and neoplastic mammary biology. Examination of these mice revealed that overexpression of TGFα has profound consequences for this tissue. Most strikingly, transgenic mice expressing TGFα under the control of tissue-specific and nonspecific promoters stochastically developed focal mammary tumors with an incidence and latency that was markedly affected by pregnancy. Most TGFα-induced tumors were well-differentiated adenomas/adenocarcinomas, although some were undifferentiated and locally invasive. Distant metastases were only occasionally observed. Administration of the genotoxic carcinogen, 7,12-dimethylbenzanthracene (DMBA), dramatically accelerated mammary tumorigenesis induced by the TGFα transgene, raising the possibility that TGFα acts as a promoter in this tissue. Mice harboring dual transgenes encoding TGFα and either wild-type ERBB2 or c-myc displayed markedly accelerated tumorigenesis compared to mice carrying any of the single transgenes alone, indicative of potent cooperativity. Moreover, tumorigenesis in the bitransgenic mice was less dependent on pregnancy, and tumors were generally more malignant in appearance. Finally, TGFα also affected mammary gland dynamics. TGFα transgenic mice consistently displayed precocious alveolar development, were variably impaired with respect to lactation, and showed markedly reduced postlactional involution. As a result, the glands of multiparous females accumulated hyperplastic lesions that generally resembled milk-producing alveoli. Limited data support the hypothesis that these lesions were precursors to TGFα-induced tumors. In summary, these various findings underscore the potential importance of TGFα for cellular differentiation and transformation in the mammary gland. They also establish TGFα transgenic mice as a powerful model with which to study the role of EGFR signaling molecules in this dynamic tissue.",
keywords = "EGFR, Mammary gland, Neoplasia, TGFα, Transgenic mice",
author = "Joyce Schroeder and Lee, {David C.}",
year = "1997",
language = "English (US)",
volume = "2",
pages = "119--129",
journal = "Journal of Mammary Gland Biology and Neoplasia",
issn = "1083-3021",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Transgenic mice reveal roles for TGFα and EGF receptor in mammary gland development and neoplasia

AU - Schroeder, Joyce

AU - Lee, David C.

PY - 1997

Y1 - 1997

N2 - Transforming growth factor-alpha (TGFα)4 and/or the EGF receptor (EGFR) are frequently overexpressed by human and rodent breast tumors, as well as tumor-derived cell lines. Additionally, various observations suggest a role for TGFα and the EGFR signaling system in normal mouse mammary gland development. Recently, several laboratories have established TGFα transgenic mice with which to study the role of this growth factor in normal and neoplastic mammary biology. Examination of these mice revealed that overexpression of TGFα has profound consequences for this tissue. Most strikingly, transgenic mice expressing TGFα under the control of tissue-specific and nonspecific promoters stochastically developed focal mammary tumors with an incidence and latency that was markedly affected by pregnancy. Most TGFα-induced tumors were well-differentiated adenomas/adenocarcinomas, although some were undifferentiated and locally invasive. Distant metastases were only occasionally observed. Administration of the genotoxic carcinogen, 7,12-dimethylbenzanthracene (DMBA), dramatically accelerated mammary tumorigenesis induced by the TGFα transgene, raising the possibility that TGFα acts as a promoter in this tissue. Mice harboring dual transgenes encoding TGFα and either wild-type ERBB2 or c-myc displayed markedly accelerated tumorigenesis compared to mice carrying any of the single transgenes alone, indicative of potent cooperativity. Moreover, tumorigenesis in the bitransgenic mice was less dependent on pregnancy, and tumors were generally more malignant in appearance. Finally, TGFα also affected mammary gland dynamics. TGFα transgenic mice consistently displayed precocious alveolar development, were variably impaired with respect to lactation, and showed markedly reduced postlactional involution. As a result, the glands of multiparous females accumulated hyperplastic lesions that generally resembled milk-producing alveoli. Limited data support the hypothesis that these lesions were precursors to TGFα-induced tumors. In summary, these various findings underscore the potential importance of TGFα for cellular differentiation and transformation in the mammary gland. They also establish TGFα transgenic mice as a powerful model with which to study the role of EGFR signaling molecules in this dynamic tissue.

AB - Transforming growth factor-alpha (TGFα)4 and/or the EGF receptor (EGFR) are frequently overexpressed by human and rodent breast tumors, as well as tumor-derived cell lines. Additionally, various observations suggest a role for TGFα and the EGFR signaling system in normal mouse mammary gland development. Recently, several laboratories have established TGFα transgenic mice with which to study the role of this growth factor in normal and neoplastic mammary biology. Examination of these mice revealed that overexpression of TGFα has profound consequences for this tissue. Most strikingly, transgenic mice expressing TGFα under the control of tissue-specific and nonspecific promoters stochastically developed focal mammary tumors with an incidence and latency that was markedly affected by pregnancy. Most TGFα-induced tumors were well-differentiated adenomas/adenocarcinomas, although some were undifferentiated and locally invasive. Distant metastases were only occasionally observed. Administration of the genotoxic carcinogen, 7,12-dimethylbenzanthracene (DMBA), dramatically accelerated mammary tumorigenesis induced by the TGFα transgene, raising the possibility that TGFα acts as a promoter in this tissue. Mice harboring dual transgenes encoding TGFα and either wild-type ERBB2 or c-myc displayed markedly accelerated tumorigenesis compared to mice carrying any of the single transgenes alone, indicative of potent cooperativity. Moreover, tumorigenesis in the bitransgenic mice was less dependent on pregnancy, and tumors were generally more malignant in appearance. Finally, TGFα also affected mammary gland dynamics. TGFα transgenic mice consistently displayed precocious alveolar development, were variably impaired with respect to lactation, and showed markedly reduced postlactional involution. As a result, the glands of multiparous females accumulated hyperplastic lesions that generally resembled milk-producing alveoli. Limited data support the hypothesis that these lesions were precursors to TGFα-induced tumors. In summary, these various findings underscore the potential importance of TGFα for cellular differentiation and transformation in the mammary gland. They also establish TGFα transgenic mice as a powerful model with which to study the role of EGFR signaling molecules in this dynamic tissue.

KW - EGFR

KW - Mammary gland

KW - Neoplasia

KW - TGFα

KW - Transgenic mice

UR - http://www.scopus.com/inward/record.url?scp=0031107207&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031107207&partnerID=8YFLogxK

M3 - Article

C2 - 10882298

AN - SCOPUS:0031107207

VL - 2

SP - 119

EP - 129

JO - Journal of Mammary Gland Biology and Neoplasia

JF - Journal of Mammary Gland Biology and Neoplasia

SN - 1083-3021

IS - 2

ER -