Tribological, thermal, and kinetic characterization of 300-mm copper chemical mechanical planarization process

Yubo Jiao, Yasa Adi Sampurno, Yun Zhuang, Xiaomin Wei, Anand Meled, Ara Philipossian

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

In this study, the tribological, thermal, and kinetic attributes of 300-mm copper chemical mechanical planarization were characterized for two different pads. The coefficient of friction (COF) ranged from 0.39 to 0.59 for the D100 pad, indicating that boundary lubrication was the dominant tribological mechanism. In comparison, COF decreased sharply from 0.55 to 0.03 for the IC1000 pad, indicating that the tribological mechanism transitioned rapidly from boundary lubrication to partial lubrication. Consequently, the D100 pad exhibited higher pad temperatures and removal rates than the IC1000 pad. A two-step modified Langmuir-Hinshelwood model was used to simulate copper removal rates as well as chemical and mechanical rate constants. The simulated copper removal rates agreed very well with experimental data and the model successfully captured the non-Prestonian behavior. The simulated chemical rate to mechanical rate constant ratios indicated that the IC1000 pad generally produced a more mechanically controlled removal mechanism than the D100 pad.

Original languageEnglish (US)
Article number05EC02
JournalJapanese Journal of Applied Physics
Volume50
Issue number5 PART 2
DOIs
StatePublished - May 1 2011

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Tribological, thermal, and kinetic characterization of 300-mm copper chemical mechanical planarization process'. Together they form a unique fingerprint.

Cite this