Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: Evidence that thin filaments rearrange to form striated myofibrils

Angels Almenar-Queralt, Carol Gregorio, Velia M. Fowler

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Actin filament lengths in muscle and nonmuscle cells are believed to depend on the regulated activity of capping proteins at both the fast growing (barbed) and slow growing (pointed) filament ends. In striated muscle, the pointed end capping protein, tropomodulin, has been shown to maintain the lengths of thin filaments in mature myofibrils. To determine whether tropomodulin might also be involved in thin filament assembly, we investigated the assembly of tropomodulin into myofibrils during differentiation of primary cultures of chick skeletal muscle cells. Our results show that tropomodulin is expressed early in differentiation and is associated with the earliest premyofibrils which contain overlapping and misaligned actin filaments. In addition, tropomodulin can be found in actin filament bundles at the distal tips of growing myotubes, where sarcomeric α-actinin is not always detected, suggesting that tropomodulin caps actin filament pointed ends even before the filaments are cross-linked into Z bodies by α-actinin. Tropomodulin staining exhibits an irregular punctate pattern along the length of premyofibrils that demonstrate a smooth phalloidin staining pattern for F-actin. Strikingly, the tropomodulin dots often appear to be located between the closely spaced, dot-like Z bodies that are stained for α-actinin. Thus, in the earliest premyofibrils, the pointed ends of the thin filaments are clustered and partially aligned with respect to the Z bodies (the location of the barbed filament ends). At later stages of differentiation, the tropomodulin dots become aligned into regular periodic striations concurrently with the appearance of striated phalloidin staining for F-actin and alignment of Z bodies into Z lines. Tropomodulin, together with the barbed end capping protein, CapZ, may function from the earliest stages of myofibrillogenesis to restrict the lengths of newly assembled thin filaments by capping their ends; thus, transitions from nonstriated to striated myofibrils in skeletal muscle are likely due principally to filament rearrangements rather than to filament polymerization or depolymerization. Rearrangements of actin filaments capped at their pointed and barbed ends may be a general mechanism by which cells restructure their actin cytoskeletal networks during cell growth and differentiation.

Original languageEnglish (US)
Pages (from-to)1111-1123
Number of pages13
JournalJournal of Cell Science
Volume112
Issue number8
StatePublished - 1999

Fingerprint

Tropomodulin
Muscle Development
Myofibrils
Skeletal Muscle
Actin Cytoskeleton
Actinin
Phalloidine
Actins
Staining and Labeling
CapZ Actin Capping Protein
Muscle Cells
Striated Muscle
Skeletal Muscle Fibers
Polymerization

Keywords

  • Actin
  • Muscle
  • Myofibril
  • Tropomodulin

ASJC Scopus subject areas

  • Cell Biology

Cite this

Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle : Evidence that thin filaments rearrange to form striated myofibrils. / Almenar-Queralt, Angels; Gregorio, Carol; Fowler, Velia M.

In: Journal of Cell Science, Vol. 112, No. 8, 1999, p. 1111-1123.

Research output: Contribution to journalArticle

@article{08c65a1c269d4489a6bfd0b2281a08b0,
title = "Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: Evidence that thin filaments rearrange to form striated myofibrils",
abstract = "Actin filament lengths in muscle and nonmuscle cells are believed to depend on the regulated activity of capping proteins at both the fast growing (barbed) and slow growing (pointed) filament ends. In striated muscle, the pointed end capping protein, tropomodulin, has been shown to maintain the lengths of thin filaments in mature myofibrils. To determine whether tropomodulin might also be involved in thin filament assembly, we investigated the assembly of tropomodulin into myofibrils during differentiation of primary cultures of chick skeletal muscle cells. Our results show that tropomodulin is expressed early in differentiation and is associated with the earliest premyofibrils which contain overlapping and misaligned actin filaments. In addition, tropomodulin can be found in actin filament bundles at the distal tips of growing myotubes, where sarcomeric α-actinin is not always detected, suggesting that tropomodulin caps actin filament pointed ends even before the filaments are cross-linked into Z bodies by α-actinin. Tropomodulin staining exhibits an irregular punctate pattern along the length of premyofibrils that demonstrate a smooth phalloidin staining pattern for F-actin. Strikingly, the tropomodulin dots often appear to be located between the closely spaced, dot-like Z bodies that are stained for α-actinin. Thus, in the earliest premyofibrils, the pointed ends of the thin filaments are clustered and partially aligned with respect to the Z bodies (the location of the barbed filament ends). At later stages of differentiation, the tropomodulin dots become aligned into regular periodic striations concurrently with the appearance of striated phalloidin staining for F-actin and alignment of Z bodies into Z lines. Tropomodulin, together with the barbed end capping protein, CapZ, may function from the earliest stages of myofibrillogenesis to restrict the lengths of newly assembled thin filaments by capping their ends; thus, transitions from nonstriated to striated myofibrils in skeletal muscle are likely due principally to filament rearrangements rather than to filament polymerization or depolymerization. Rearrangements of actin filaments capped at their pointed and barbed ends may be a general mechanism by which cells restructure their actin cytoskeletal networks during cell growth and differentiation.",
keywords = "Actin, Muscle, Myofibril, Tropomodulin",
author = "Angels Almenar-Queralt and Carol Gregorio and Fowler, {Velia M.}",
year = "1999",
language = "English (US)",
volume = "112",
pages = "1111--1123",
journal = "Journal of Cell Science",
issn = "0021-9533",
publisher = "Company of Biologists Ltd",
number = "8",

}

TY - JOUR

T1 - Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle

T2 - Evidence that thin filaments rearrange to form striated myofibrils

AU - Almenar-Queralt, Angels

AU - Gregorio, Carol

AU - Fowler, Velia M.

PY - 1999

Y1 - 1999

N2 - Actin filament lengths in muscle and nonmuscle cells are believed to depend on the regulated activity of capping proteins at both the fast growing (barbed) and slow growing (pointed) filament ends. In striated muscle, the pointed end capping protein, tropomodulin, has been shown to maintain the lengths of thin filaments in mature myofibrils. To determine whether tropomodulin might also be involved in thin filament assembly, we investigated the assembly of tropomodulin into myofibrils during differentiation of primary cultures of chick skeletal muscle cells. Our results show that tropomodulin is expressed early in differentiation and is associated with the earliest premyofibrils which contain overlapping and misaligned actin filaments. In addition, tropomodulin can be found in actin filament bundles at the distal tips of growing myotubes, where sarcomeric α-actinin is not always detected, suggesting that tropomodulin caps actin filament pointed ends even before the filaments are cross-linked into Z bodies by α-actinin. Tropomodulin staining exhibits an irregular punctate pattern along the length of premyofibrils that demonstrate a smooth phalloidin staining pattern for F-actin. Strikingly, the tropomodulin dots often appear to be located between the closely spaced, dot-like Z bodies that are stained for α-actinin. Thus, in the earliest premyofibrils, the pointed ends of the thin filaments are clustered and partially aligned with respect to the Z bodies (the location of the barbed filament ends). At later stages of differentiation, the tropomodulin dots become aligned into regular periodic striations concurrently with the appearance of striated phalloidin staining for F-actin and alignment of Z bodies into Z lines. Tropomodulin, together with the barbed end capping protein, CapZ, may function from the earliest stages of myofibrillogenesis to restrict the lengths of newly assembled thin filaments by capping their ends; thus, transitions from nonstriated to striated myofibrils in skeletal muscle are likely due principally to filament rearrangements rather than to filament polymerization or depolymerization. Rearrangements of actin filaments capped at their pointed and barbed ends may be a general mechanism by which cells restructure their actin cytoskeletal networks during cell growth and differentiation.

AB - Actin filament lengths in muscle and nonmuscle cells are believed to depend on the regulated activity of capping proteins at both the fast growing (barbed) and slow growing (pointed) filament ends. In striated muscle, the pointed end capping protein, tropomodulin, has been shown to maintain the lengths of thin filaments in mature myofibrils. To determine whether tropomodulin might also be involved in thin filament assembly, we investigated the assembly of tropomodulin into myofibrils during differentiation of primary cultures of chick skeletal muscle cells. Our results show that tropomodulin is expressed early in differentiation and is associated with the earliest premyofibrils which contain overlapping and misaligned actin filaments. In addition, tropomodulin can be found in actin filament bundles at the distal tips of growing myotubes, where sarcomeric α-actinin is not always detected, suggesting that tropomodulin caps actin filament pointed ends even before the filaments are cross-linked into Z bodies by α-actinin. Tropomodulin staining exhibits an irregular punctate pattern along the length of premyofibrils that demonstrate a smooth phalloidin staining pattern for F-actin. Strikingly, the tropomodulin dots often appear to be located between the closely spaced, dot-like Z bodies that are stained for α-actinin. Thus, in the earliest premyofibrils, the pointed ends of the thin filaments are clustered and partially aligned with respect to the Z bodies (the location of the barbed filament ends). At later stages of differentiation, the tropomodulin dots become aligned into regular periodic striations concurrently with the appearance of striated phalloidin staining for F-actin and alignment of Z bodies into Z lines. Tropomodulin, together with the barbed end capping protein, CapZ, may function from the earliest stages of myofibrillogenesis to restrict the lengths of newly assembled thin filaments by capping their ends; thus, transitions from nonstriated to striated myofibrils in skeletal muscle are likely due principally to filament rearrangements rather than to filament polymerization or depolymerization. Rearrangements of actin filaments capped at their pointed and barbed ends may be a general mechanism by which cells restructure their actin cytoskeletal networks during cell growth and differentiation.

KW - Actin

KW - Muscle

KW - Myofibril

KW - Tropomodulin

UR - http://www.scopus.com/inward/record.url?scp=0032948760&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032948760&partnerID=8YFLogxK

M3 - Article

C2 - 10085247

AN - SCOPUS:0032948760

VL - 112

SP - 1111

EP - 1123

JO - Journal of Cell Science

JF - Journal of Cell Science

SN - 0021-9533

IS - 8

ER -